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Paper 001: 

Applications of DTALE: Damage Tolerance Analysis & Life Enhancement[3-D 
Non-planar Crack Growth] 

Atluri SN 

Abstract: The solution of three-dimensional cracks (arbitrary surfaces of discontinuity) in solids and structures is 
considered. The BEM, developed based on the symmetric Galerkin BIEs, is used for obtaining the fracture 
solutions at the arbitrary crack-front. The finite element method is used to model the uncracked global (built-up) 
structure for obtaining the stresses in an otherwise uncracked body. The solution for the cracked structural 
component is obtained in an iteration procedure, which alternates between FEM solution for the uncracked body, 
and the SGBEM solution for the crack in the local finite-sized subdomain. In addition, some crack growth models 
are used to advance the crack front in fatigue and other stable-carck-growth situations. The crack-surface mesh is 
also changed correspondingly in the BEM model, while the FEM model for the uncracked structure is kept 
unchanged. The automatic crack growth analysis is achieved by repeating the fracture analysis, and the life of the 
structural components is estimated. Furthermore, the initial crack size and shape in a structure, as emanating from 
a microscopic defect, can be determined by utilizing the automatic crack-growth feature. Some state-of-the-art 
numerical solutions are also presented to indicate the type of problems that can now be solved using currently 
available techniques. All these methodologies are embedded in a user-friendly software, DTALE (Damage 
Tolerance Analysis and Life Enhancement), which is available for commercial use , in the safety evaluation and 
life-estimation of a variety of structures. Life enhancement methodologies with deliberate introduction of residual 
stress-fields, is also a feature of DTALE. 

Source: SID:Structural Integrity & Durability, 1(1), 1-21, April 2005



5  
 

Paper 003: 

Simulation of a 4(th) order ODE: Illustration of various primal & mixed MLPG 
methods 

Atluri SN, Shen SP 

Abstract: Various MLPG methods, with the MLS approximation for the trial function, in the solution of a 
4$^{th}$ order ordinary differential equation are illustrated. Both the primal MLPG methods and the mixed 
MLPG methods are used. All the possible local weak forms for a 4$^{th}$ order ordinary differential equation are 
presented. In the first kind of mixed MLPG methods, both the displacement and its second derivative are 
interpolated independently through the MLS interpolation scheme. In the second kind of mixed MLPG methods, 
the displacement, its first derivative, second derivative and third derivative are interpolated independently through 
the MLS interpolation scheme. The nodal values of the independently interpolated derivatives are expressed in 
terms of nodal values of the independently interpolated displacements, by simply enforcing the strain-
displacement relationships directly by collocation at the nodal points. The mixed MLPG methods avoid the need 
for a direct evaluation of high order derivatives of the primary variables in the local weak forms, and thus reduce 
the continuity-requirement on the trial function. Numerical results are presented to illustrate the effectiveness of 
the primal, as well as two kind of mixed MLPG methods. It is concluded that the mixed MLPG methods are very 
cost-effective. 

Source: CMES:Computer Modeling in Engineering & Sciences 7 (3): 241-268 MAR 2005
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Paper 004: 

The Basis of meshless domain discretization: the meshless local Petrov-
Galerkin (MLPG) method 

Atluri SN, Shen SP 

Abstract: The MLPG method is the general basis for several variations of meshless methods presented in recent 
literature. The interrelation of the various meshless approaches is presented in this paper. Several variations of the 
meshless interpolation schemes are reviewed also. Recent developments and applications of the MLPG methods 
are surveyed. 

Source: Advances in Computational Mathematics 23 (1-2): 73-93 JUL 2005
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Paper 005: 

Truly Meshless Local Petrov-Galerkin (MLPG) solutions of traction & 
displacement BIEs 

Han ZD, Atluri SN 

Abstract: The numerical implementation of the truly Meshless Local Petrov-Galerkin (MLPG) type weak-forms 
of the displacement and traction boundary integral equations is presented, for solids undergoing small 
deformations. In the accompanying part I of this paper, the general MLPG/BIE weak-forms were presented 
[Atluri, Han and Shen (2003)]. The MLPG weak forms provide the most general basis for the numerical solution 
of the non-hyper-singular displacement and traction BIEs [given in Han, and Atluri (2003)], which are simply 
derived by using the gradients of the displacements of the fundamental solutions [Okada, Rajiyah, and Atluri 
(1989a,b)]. By employing the various types of test functions, in the MLPG-type weak-forms of the non-hyper-
singular dBIE and tBIE over the local sub-boundary surfaces, several types of MLPG/BIEs are formulated, while 
also using several types of non-element meshless interpolations for trial functions over the surface of the solid. 
Specifically, three types of MLPG/BIEs are formulated in that paper, i.e. MLPG/BIE1, MLPG/BIE2, and 
MLPG/BIE6, as per the consistent categorizations of the MLPG domain methods [Atluri and Shen (2002a)]. As 
the accompanying part II, this paper is devoted to MLPG/BIE6. In particular, the moving least squares (MLS) 
method has been extended for the approximation on three dimensional surfaces, which makes it possible for the 
MLPG/BIE methods to be truly meshless. Numerical examples, including crack problems, are presented to 
demonstrate that the present methods are very promising, especially for solving the elastic problems in which the 
singularities in displacements, strains, and stresses, are of primary concern. 

This paper is based on research performed under the support of ARO. The authors gratefully acknowledge this 
support. 

Source: CMES:Computer Modeling in Engineering & Sciences 4 (6): 665-678 DEC 2003
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Paper 006: 

The Applications of Meshless Local Petrov-Galerkin (MLPG) Approaches in 
High-Speed Impact, Penetration and Perforation Problems 

Han ZD, Liu HT, Rajendran AM, Atluri SN 

Abstract: This paper presents the implementation of a three-dimensional dynamic code, for contact, impact, and 
penetration mechanics, based on the Meshless Local Petrov-Galerkin (MLPG) approach. In the current 
implementation, both velocities and velocity-gradients are interpolated independently, and their compatibility is 
enforced only at nodal points. As a result, the time consuming differentiations of the shape functions at all 
integration points is avoided, and therefore, the numerical process becomes more stable and efficient. The ability 
of the MLPG code for solving high-speed contact, impact and penetration problems with large deformations and 
rotations is demonstrated through several computational simulations, including the Taylor impact problem, and 
some ballistic impact and perforation problems. The computational times for the above simulations are recorded, 
and are compared with those of the popular finite element code (Dyna3D), to demonstrate the efficiency of the 
present MLPG approach. 

Source: CMES: Computer Modeling in Engineering & Sciences, 14(2) 119-128 ,2006
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Paper 007: 

Meshless Local Petrov-Galerkin (MLPG) approaches for solving nonlinear 
problems with large deformations and rotations 

Han ZD, Rajendran AM, Atluri SN 

Abstract: A nonlinear formulation of the Meshless Local Petrov-Galerkin (MLPG) finite-volume mixed method 
is developed for the large deformation analysis of static and dynamic problems. In the present MLPG large 
deformation formulation, the velocity gradients are interpolated independently, to avoid the time consuming 
differentiations of the shape functions at all integration points. The nodal values of velocity gradients are 
expressed in terms of the independently interpolated nodal values of displacements (or velocities), by enforcing 
the compatibility conditions directly at the nodal points. For validating the present large deformation MLPG 
formulation, two example problems are considered: 1) large deformations and rotations of a hyper-elastic 
cantilever beam, and 2) impact of an elastic-plastic solid rod (cylinder) on a rigid surface (often called as the 
Taylor impact test). The MLPG result for the cantilever beam problem was successfully compared with results 
from both analytical modeling and a commercial finite element code simulation. The final shapes of the 
plastically deformed rod obtained from a well-known finite element code, and the present MLPG code were also 
successfully compared. The direct comparison of computer run times between the finite element method (FEM) 
and the large deformation mixed MLPG method showed that the MLPG method was relatively more efficient 
than the FEM, at least for the two example problems considered in the present study. 

Source: CMES:Computer Modeling in Engineering & Sciences 10 (1): 1-12 OCT 2005
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Paper 008: 

The MLPG mixed collocation method for material orientation and topology 
optimization of anisotropic solids and structures 

Li S, Atluri SN 

Abstract: In this paper, a method based on a combination of an optimization of directions of orthotropy, along 
with topology optimization, is applied to continuum orthotropic solids with the objective of minimizing their 
compliance. The spatial discretization algorithm is the so called Meshless Local Petrov-Galerkin (MLPG) ``mixed 
collocation'' method for the design domain, and the material-orthotropy orientation angles and the nodal volume 
fractions are used as the design variables in material optimization and topology optimization, respectively. 
Filtering after each iteration diminishes the checkerboard effect in the topology optimization problem. The 
example results are provided to illustrate the effects of the orthotropic material characteristics in structural 
topology-optimization. 

Source: CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES   Volume: 30   Issue: 1   Pages: 37-
56, 2008
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Paper 009: 

Topology-optimization of Structures Based on the MLPG Mixed Collocation 
Method 

Li,S; and Atluri,SN 

Abstract: The Meshless Local Petrov-Galerkin (MLPG) ``mixed collocation'' method is applied to the problem of 
topology-optimization of elastic structures. In this paper, the topic of compliance minimization of elastic 
structures is pursued, and nodal design variables which represent nodal volume fractions at discretized nodes are 
adopted. A so-called nodal sensitivity filter is employed, to prevent the phenomenon of checkerboarding in 
numerical solutions to the topology-optimization problems. The example results presented in the paper 
demonstrate the suitability and versatility of the MLPG ``mixed collocation'' method, in implementing structural 
topology-optimization. 

Source: CMES: Computer Modeling in Engineering & Sciences, Vol. 26, No. 1, pp. 61-74, 2008 
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Paper 010: 

A novel time integration method for solving a large system of non-linear 
algebraic equations 

Liu CS, Atluri SN 

Abstract: Iterative algorithms for solving a nonlinear system of algebraic equations of the type: 
$F_i(x_j)=0,\nobreakspace {}i,j=1,\ldots ,n$ date back to the seminal work of Issac Newton. Nowadays a 
Newton-like algorithm is still the most popular one due to its easy numerical implementation. However, this type 
of algorithm is sensitive to the initial guess of the solution and is expensive in the computations of the Jacobian 
matrix $\partial F_i/\partial x_j$ and its inverse at each iterative step. In a time-integration of a system of 
nonlinear Ordinary Differential Equations (ODEs) of the type $B_{ij}\mathaccentV {dot}05Fx_j+F_i=0$ where 
$B_{ij}$ are nonlinear functions of $x_j$, the methods which involve an inverse of the Jacobain matrix 
$B_{ij}=\partial F_i/\partial x_j$ are called ``Implicit'', while those that do not involve an inverse of $\partial 
F_i/\partial x_j$ are called ``Explicit''. In this paper a natural system of explicit ODEs is derived from the given 
system of nonlinear algebraic equations (NAEs), by introducing a fictitious time, such that it is a mathematically 
equivalent system in the $n+1$-dimensional space as the original algebraic equations system is in the $n$-
dimensional space. The iterative equations are obtained by applying numerical integrations on the resultant ODEs, 
which do not need the information of $\partial F_i/\partial x_j$ and its inverse. The computational cost is thus 
greatly reduced. Numerical examples given confirm that this fictitious time integration method (FTIM) is highly 
efficient to find the true solutions with residual errors being much smaller. Also, the FTIM is used to study the 
attracting sets of fixed points, when multiple roots exist. 

Source: CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES   Volume: 31   Issue: 2   Pages: 71-
83, 2008.  
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Paper 011: 

Computational Modeling of Impact Response with the RG Damage Model and 
the Meshless Local Petrov-Galerkin (MLPG) Approaches 

Liu HT, Han ZD, Rajendran, AM, Atluri SN 

Abstract: The Rajendran-Grove (RG) ceramic damage model is a three-dimensional internal variable based 
constitutive model for ceramic materials, with the considerations of micro-crack extension and void collapse. In 
the present paper, the RG ceramic model is implemented into the newly developed computational framework 
based on the Meshless Local Petrov-Galerkin (MLPG) method, for solving high-speed impact and penetration 
problems. The ability of the RG model to describe the internal damage evolution and the effective material 
response is investigated. Several numerical examples are presented, including the rod-on-rod impact, plate-on-
plate impact, and ballistic penetration. The computational results are compared with available experiments, as 
well as those obtained by the popular finite element code (Dyna3D). 

Source: CMC-Computers, Materials & Continua, 4(1) 43-54,2006
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Paper 012: 

The optimal radius of the support of radial weights used in moving least 
squares approximation 

Nie YF, Atluri SN, Zuo CW 

Abstract: Owing to the meshless and local characteristics, moving least squares (MLS) methods have been used 
extensively to approximate the unknown function of partial differential equation initial boundary value problem. 
In this paper, based on matrix analysis, a sufficient and necessary condition for the existence of inverse of 
coefficient matrix used in MLS methods is developed firstly. Then in the light of approximate theory, a practical 
mathematics model is posed to obtain the optimal radius of support of radial weights used in MLS methods. As an 
example, while uniform distributed particles and the 4$^{th}$ order spline weight function are adopted in MLS 
method in two dimension domain and two kinds of norms are used to measure error, optimal results for linear and 
quadratic basis are gained. Finally, the test data verify that the optimal values are correct. The research idea can be 
used in 3-dimension problems too. 

Source: CMES:Computer Modeling in Engineering & Sciences 12 (2): 137-147 APR 2006
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Paper 013: 

Meshless Local Petrov-Galerkin (MLPG)Mixed Methods for Solid Mechanics 

Han ZD, Atluri SN 

Abstract: Various methods have been developed within the framework of the Meshless Local Petrov-Galerkin 
(MLPG) approach, for solving solid mechanics problems. A "mixed" interpolation scheme is adopted in the 
present implementation: the displacements, displacement gradients, and stresses are interpolated independently 
using identical interpolation. The system of algebraic equations for the problem is obtained by enforcing the 
momentum balance laws at the nodal points. Numerical examples show that the MLPG mixed methods are 
accurate and efficient, and stable. 

Source: Advances in Computational & Experimental Engineering and Science, 2007, pp.1748-
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Paper 014: 

Atomic-level stress calculation and continuum-molecular system equivalence 

Shen SP, Atluri SN 

Abstract: An atomistic level stress tensor is defined with physical clarity, based on the SPH method. This stress 
tensor rigorously satisfies the conservation of linear momentum, and is appropriate for both homogeneous and 
inhomogeneous deformations. The formulation is easier to implement than other stress tensors that have been 
widely used in atomistic analysis, and is validated by numerical examples. The present formulation is very robust 
and accurate, and will play an important role in the multiscale simulation, and in molecular dynamics. An 
equivalent continuum is also defined for the molecular dynamics system, based on the developed definition of 
atomistic stress and in conjunction with the SPH technique. The process is simple and easy to implement, and the 
fields are with high-order continuity. This equivalent continuum maintains the physical attributes of the atomistic 
system. This development provides a systematic approach to the continuum analysis of the discrete atomic 
systems. 

Source: CMES:Computer Modeling in Engineering & Sciences 6 (1): 91-104 2004
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Paper 015: 

Computational nano-mechanics and multi-scale simulation 

Shen SP, Atluri SN 

Abstract: This article provides a review of the computational nanomechanics, from the methods to classical 
molecular dynamics simulations, and multi- temporal and spatial scale simulations. The recent improvements and 
developments are briefly discussed. Their applications in nanomechanics and nanotubes are also summarized. 

Source: CMC-Computers, Materials & Continua 1 (1): 59-90 MAR 2004
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Paper 016: 

Multiscale simulation based on the meshless local Petrov-Galerkin (MLPG) 
method 

Shen SP, Atluri SN 

Abstract: A multiscale simulation technique based on the MLPG methods, and finite deformation mechanics, is 
developed, implemented, and tested. Several alternate time-dependent interfacial conditions, between the 
atomistic and continuum regions, are systematically studied, for the seamless multiscale simulation, by 
decomposing the displacement of atoms in the equivalent-continuum region into long and short wave-length 
components. All of these methods for enforcing the interface conditions can ensure the passage of information 
accurately between the atomistic and continuum regions, while they lead to different performances at short 
wavelengths. The presently proposed Solution Method 2 reduces the phonon reflections at the interface, without 
increasing the computational burden. Multiple length scale, multiple time step, and meshless local Petrov-
Galerkin (MLPG) methods are used in the numerical examples. 

Source: CMES:Computer Modeling in Engineering & Sciences 5 (3): 235-255 MAR 2004
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Paper 017: 

Modeling of Piezoelectric and Piezomagnetic Solids by the MLPG Method 

Sladek J,; Sladek V,; Solek P,; Atluri SN 

Abstract: A meshless method based on the local Petrov-Galerkin approach is proposed to solve 2-D and 3-D 
axisymmetric boundary value problems in piezoelectric and magneto-electric-elastic solids with continuously 
varying material properties. Axial symmetry of geometry and boundary conditions reduces the original 3-D 
boundary value problem into a 2-D problem in the axial cross section. Stationary and transient dynamic problems 
are considered in this paper. The mechanical fields are described by the equations of motion with an inertial term. 
To eliminate the time-dependence in the governing partial differential equations the Laplace-transform technique 
is applied to the governing equations, which are satisfied in the Laplace-transformed domain in a weak-form on 
small subdomains. Nodal points are spread on the analyzed domain and each node is surrounded by a small circle 
for simplicity. The spatial variation of the displacements and the electric potential are approximated by the 
Moving Least-Squares (MLS) scheme. After performing the spatial integrations, one obtains a system of linear 
algebraic equations for unknown nodal values. The boundary conditions on the global boundary are satisfied by 
the collocation of the MLS-approximation expressions for the displacements and the electric potential at the 
boundary nodal points. The Stehfest’s inversion method is applied to obtain the final time-dependent solutions. 

Source: in  Advances in the MLPG Method ( Eds. SN Atluri, J Sladek, and J Soric), Tech Science Press, GA, 2008.
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Paper 018: 

The Eulerian-Lagrangian Method of Fundamental Solutions for Two-
dimensional Unsteady Burgers’ Equations 

Young DL, Fan  CM,  Hu  SP,  and Atluri  SN 

Abstract: The Eulerian–Lagrangian method of fundamental solutions is proposed to solve the two-dimensional 
unsteady Burgers’ equations. Through the Eulerian–Lagrangian technique, the quasi-linear Burgers’ equations can 
be converted to the characteristic diffusion equations. The method of fundamental solutions is then adopted to 
solve the diffusion equation through the diffusion fundamental solution; in the meantime the convective term in 
the Burgers’ equations is retrieved by the back-tracking scheme along the characteristics. The proposed numerical 
scheme is free from mesh generation and numerical integration and is a truly meshless method. Two-dimensional 
Burgers’ equations of one and two unknown variables with and without considering the disturbance of noisy data 
are analyzed. The numerical results are compared very well with the analytical solutions as well as the results by 
other numerical schemes. By observing these comparisons, the proposed meshless numerical scheme is convinced 
to be an accurate, stable and simple method for the solutions of the Burgers’ equations with irregular domain even 
using very coarse collocating points. 

 

Source: Engineering Analysis with Boundary Element Methods, Volume: 32   Issue: 5   Pages: 395-412, 2008   
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Paper 019: 

Meshless Local Petrov-Galerkin (MLPG) Approaches for Solving Nonlinear 
Problems with Large Deformation and Rotation 

Z. D. Han, A. M. Rajendran and S. N. Atluri 

Abstract: A nonlinear formulation of the Meshless Local Petrov-Galerkin (MLPG) finite-volume mixed method 
is developed for the large deformation analysis of static and dynamic problems. In the present MLPG large 
deformation formulation, the velocity gradients are interpolated independently, to avoid the time consuming 
differentiations of the shape functions at all integration points. The nodal values of velocity gradients are 
expressed in terms of the independently interpolated nodal values of displacements (or velocities), by enforcing 
the compatibility conditions directly at the nodal points. For validating the present large deformation MLPG 
formulation, two example problems are considered: 1) large deformations and rotations of a hyper-elastic 
cantilever beam, and 2) impact of an elastic-plastic solid rod (cylinder) on a rigid surface (often called as the 
Taylor impact test). The MLPG result for the cantilever beam problem was successfully compared with results 
from both analytical modeling and a commercial finite element code simulation. The final shapes of the 
plastically deformed rod obtained from a well-known finite element code, and the present MLPG code were also 
successfully compared. The direct comparison of computer run times between the finite element method (FEM) 
and the large deformation mixed MLPG method showed that the MLPG method was relatively more efficient 
than the FEM, at least for the two example problems considered in the present study. 

This paper is based on research performed under the support of ARO. The authors gratefully acknowledge this 
support. 

Source: Advances in Computational & Experimental Engineering and Science, 2005, INDIA, pp. 1059-
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Paper 020: 

SGBEM for Damage Tolerance Analysis and Safe Life Estimation 

Z. D Han and S. N. Atluri 
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in the local finite-sized subdomain. In addition, some crack growth models are used to advance the crack front in 
fatigue and other stable-carck-growth situations. The crack-surface mesh is also changed correspondingly in the 
BEM model, while the FEM model for the uncracked structure is kept unchanged. The automatic crack growth 
analysis is achieved by repeating the fracture analysis, and the life of the structural components is estimated. 
Furthermore, the initial crack size and shape in a structure, as emanating from a microscopic defect, can be 
determined by utilizing the automatic crack-growth feature. Some state-of-the-art numerical solutions are also 
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allows to use the independent interpolation scheme for the displacements and its gradients and stresses. It also 
reduces the support size and lowers requirements for trial function. In MLPG mixed Finite Difference Method, 
the divergence of the stress tensor is more efficiently obtained through the generalized finite difference method. 
Differential quadrature (DQ) method can be adopted for computing derivatives of a meshless interpolation from a 
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Applications of DTALE: Damage Tolerance Analysis and Life Enhancement [3-D
Non-plannar Fatigue Crack Growth]

S. N. Atluri 1

Abstract: The solution of three-dimensional cracks
(arbitrary surfaces of discontinuity) in solids and struc-
tures is considered. The BEM, developed based on the
symmetric Galerkin BIEs, is used for obtaining the frac-
ture solutions at the arbitrary crack-front. The finite el-
ement method is used to model the uncracked global
(built-up) structure for obtaining the stresses in an oth-
erwise uncracked body. The solution for the cracked
structural component is obtained in an iteration proce-
dure, which alternates between FEM solution for the un-
cracked body, and the SGBEM solution for the crack
in the local finite-sized subdomain. In addition, some
crack growth models are used to advance the crack front
in fatigue and other stable-carck-growth situations. The
crack-surface mesh is also changed correspondingly in
the BEM model, while the FEM model for the uncracked
structure is kept unchanged. The automatic crack growth
analysis is achieved by repeating the fracture analysis,
and the life of the structural components is estimated.
Furthermore, the initial crack size and shape in a struc-
ture, as emanating from a microscopic defect, can be
determined by utilizing the automatic crack-growth fea-
ture. Some state-of-the-art numerical solutions are also
presented to indicate the type of problems that can now
be solved using currently available techniques. All these
methodologies are embedded in a user-friendly software,
DTALE (Damage Tolerance Analysis and Life Enhance-
ment), which is available for commercial use , in the
safety evaluation and life-estimation of a variety of struc-
tures. Life enhancement methodologies with deliberate
introduction of residual stress-fields, is also a feature of
DTALE.

keyword: damage tolerance analysis, life enhance-
ment, arbitrary 3D surface crack, finite element method,
symmetric Galerkin boundary element method, the alter-

1 Center for Aerospace Research & Education, University of Cal-
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nating method.

1 Introduction

The calculation of fracture mechanics parameters (such
as the stress intensity factors of Modes I, II and III), for
arbitrary non-planar three-dimensional surface and inter-
nal cracks, remains an important task in the structural in-
tegrity assessment and damage tolerance analysis [Atluri
(1997)]. The three-dimensional stress analyses of crack
configurations have received a lot of attention in the last
two decades. Various methods have been investigated
to obtain the stress-intensity factors for surface cracks:
the finite element method (FEM), the boundary element
method (BEM), the coupled FEM-BEM method and the
FEM-BEM alternating method, as summarized in [Atluri
(1986)]. They were used successfully for this purpose.

The finite element method is generally regarded as the
most powerful numerical method since it can handle
complicated geometries and loading conditions. The
fracture mechanics problems are solved by using singu-
larity elements [Tan, Newman and Bigelow (1996); Raju
and Newman (1979)] or displacement hybrid elements
[Atluri and Kathireasan (1975)], or by using certain path-
independent and domain-independent integrals based on
conservative laws of continuum mechanics [Nikishkov
and Atluri (1987); Shivakumar and Raju (1992)]. Unfor-
tunately, these methods require an explicit finite-element
modeling of cracks, such as in HKS/ABAQUS. They en-
counter a serious difficulty in the mesh generation when
they are applied to three-dimensional problems, with the
extremely high human labor cost for creating appropriate
meshes for cracks in structural components of arbitrary
geometry. In addition, it is almost impossible to keep
creating the meshes with high quality, during crack prop-
agation.

It is well known that boundary element methods (BEM)
have distinct advantages over domain approaches in solv-
ing of linear elastic fracture mechanics problems. In
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BEM, the mesh should be generated only for the bound-
ary of the structure, and for the crack surface. Conse-
quently, it is simpler to create a boundary element mesh,
in comparison to a finite element mesh for a body with
a crack. The traditional (collocation) boundary element
method has certain features, which make it suitable for
the solution of crack problems. Recent publications on
the dual boundary element method [Cisilino and Aliabadi
(1999)] can serve as an example of application of tra-
ditional BEM to linear and non-linear fracture mechan-
ics problems. The symmetric Galerkin boundary ele-
ment method (SGBEM) [Han and Atluri (2002, 2003a)]
has been recently developed, based on a weakly singu-
lar weak-form of integral equations. The system ma-
trix shows symmetry and sign-definiteness. The SGBEM
overcomes some drawbacks of the traditional boundary
element methods, including the nonsymmetrical matrix
of the equation system, and the hypersingular kernels.
Another advantage of the SGBEM is that, after a spe-
cial transformation to remove the singularity from ker-
nels, the system matrices can be integrated with the use
of usual Gaussian quadrature rule [Andra (1998); Erich-
sen and Sauter (1998)]. But from the numerical point of
view, the SGBEM, like all BEM approaches, entails fully
populated coefficient matrices, which hinders their appli-
cation to large-scale problems with complex geometry.

The coupled FEM-BEM approaches are also proposed
for fracture analyses by limiting the employment of the
BEM to the fractured region [Keat, Annigeri and Cleary
(1988); Frangi and Novati (2002)]. The SGBEM shows
its special advantage in such a coupled approach, with
its symmetric system matrices and sign-definiteness. An
obvious disadvantage of this approach is that, both the
mesh of fractured region for BEM and the mesh for the
remaining part for FEM should be modified when it is
necessary to analyze cracks of different sizes and loca-
tions, including crack-growth.

The alternating method, generally known as the
Schwartz-Neumann alternating method, obtains the solu-
tion on a domain that is the intersection of two other over-
lapping domains [Kantorovich and Kriylov (1964)]. The
procedure has been applied to fracture mechanical anal-
yses. Normally the two domains are defined to be: one, a
finite body without the crack; and the second, an infinite
body with cracks. The solution is obtained by iterating
between the solution for the uncracked finite body (usu-
ally using FEM), and the cracks in an inifinite region ob-

tained with collocation BEM or SGBEM. Each solution
can be solved by various methods [Atluri (1997); Nish-
ioka and Atluri (1983); Vijaykumar and Atluri (1981);
Wang and Atluri (1996)]. For a complex geometry
with the arbitrary cracks, the alternating procedure has
been implemented by iterating between the FEM and the
SGBEM [Nikishkov, Park and Atluri (2001); Han and
Atluri (2002)]. In [Nikishkov, Park and Atluri (2001)],
two solutions are employed iteratively: 1. The FEM
solution for stresses in the uncracked global structure;
2. The SGBEM solution for the crack in an inifinite
body – thus only the crack surfaces are modeled in the
SGBEM. This approach has been applied to the embed-
ded cracks with high accuracy. It also demonstrated the
flexibility in choosing the overlapping domains for dif-
ferent crack configurations. From a computational point
of view, it also shows its efficiency in saving both compu-
tational and human labor time, by leveraging the existing
FE models. This work has been extended in [Han and
Atluri (2002)], in which he solution is obtained by alter-
nating between two finite domains: the global uncracked
structure is solved by using the FEM, and a local cracked
subdomain is solved by using the SGBEM. It eliminates
the need for evaluating the singular integral of tractions
at the free surface, during the alternating procedure when
surface crack problems are considered. At the same time,
it limits the employment of the SGBEM only for the local
cracked subdomain, and reduces the computational cost
and memory requirements, since the SGBEM entails the
fully populated system matrix. In additon, the alternat-
ing method may be also extended for the crack problems
by using the truely meshless methods, through the mesh-
less local Petrov-Galerkin approach (MLPG), pioneered
by Atluri and his colleagues [Atluri(2004); Atluri, Han
and Shen(2003); Han and Atluri (2003b, 2004a, 2004b)].

The present work discusses the recent development of the
alternating method based on FEM and SGBEM, embed-
ded in a commercial-quality software, DTALE: “Dam-
age Tolerance Analysis and Life Enhancement ”. With
DTALE, the BEM is applied only for the local crack sub-
domain, and reduces the computational cost and memory
requirements. With the use of the built-in FEM solver,
DTALE can handle much more complex structural com-
ponents than pure BEM solvers. In addition, DTALE
provides an interface to commercial FEM codes (such as
NASTRAN, ABAQUS and MARC) to retrieve the FEM
solutions of uncracked structures. From the modeling
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point of view, this approach makes the full use of the ex-
isting FE models to avoid any model regeneration, which
is extremely high in human labor cost. The presently
proposed procedure is demonstrated by solving both the
embedded and surface cracks problems. The stress in-
tensity factors are calculated and compared with the ear-
lier published solutions. The good agreements show that
the FEM-SGBEM alternating method between two finite
domains is very efficient and highly accurate for 3D ar-
bitrary crack problems. DTALE is also used to solve the
problem of mixed-mode fatigue-growth of an initially-
semi-circular surface flaw which is inclined to the direc-
tion of tensile loading in a thick plate. In addition, the au-
tomatic determination of the initial crack is also demon-
strated by using the DTALE.

2 Formulation of the non-hyper-singular symmetric
Galerkin boundary element method

The non-hypersingular displacement and traction BIEs
for a linear elastic, homogeneous, isotropic solid, are
summarized in this section. Consider a linear elastic,
homogeneous, isotropic body in a domain Ω, with a
boundary ∂Ω. The Lame’ constants of the linear elas-
tic isotropic body are λ and µ; and the corresponding
Young’s modulus and Poisson’s ratio are E and υ, respec-
tively. We use Cartesian coordinates ξi, and the attendant
base vectors ei, to describe the geometry in Ω. The solid
is assumed to undergo infinitesimal deformations. The
equations of balance of linear and angular momentum
can be written as:

∇∇∇ ·σσσ+ f = 0; σσσ = σσσt ; ∇∇∇ = ei
∂

∂ξi
(1)

The constitutive relations of an isotropic linear elastic ho-
mogeneous solid are:

σσσ = λ III (∇∇∇ ·uuu)+2µ εεε (2)

It is well known that the displacement vector, which is a
continuous function of ξξξ, can be derived, in general, from
the Galerkin-vector-potential ϕϕϕ such that:

uuu = ∇∇∇2ϕϕϕ− 1
2(1−υ)

∇∇∇(∇∇∇ ·ϕϕϕ) (3)

Consider a point unit load applied in an arbitrary direc-
tion ep at a generic location x in a linear elastic isotropic
homogeneous infinite medium. It is well-known that the

displacement solution is given by the Galerkin-vector-
displacement-potential:

ϕϕϕ∗p = (1−υ)F∗ep (4)

in which F∗ is a scalar function, as

F∗ =
r

8πµ(1−υ)
for 3D problems (5)

and

F∗ =
−r2 lnr

8πµ(1−υ)
for 2D problems (6)

where r = ‖ξξξ−x‖
The corresponding displacements are derived, by using
Eq. (3), as:

u∗p
i (x,ξξξ) = (1−υ)δpiF∗

,kk −
1
2

F∗
,pi (7)

and the gradients of the displacements in (7) are:

u∗p
i, j(x,ξξξ) = (1−υ)δpiF

∗
,kk j−

1
2

F∗
,pi j (8)

By taking the fundamental solution u∗p
i (x,ξξξ) in Eq. (7)

as the test functions, one may write the weak-form of the
equilibrium Eq. (1). The traditional displacement BIE
can be written as,

up(x) =
∫

∂Ω
t j(ξξξ)u∗p

j (x,ξξξ) dS

−
∫

∂Ω
ni(ξξξ)u j(ξξξ)σ∗p

i j (x,ξξξ) dS
(9)

Where σ∗p
i j is the stress field of the fundamental solution,

as

σ∗p
i j (x,ξξξ) ≡ Ei jklu

∗p
k,l

= µ[(1−υ)δpiF
∗
,kk j +υδi jF

∗
,pkk −F ∗

,pi j ]

+µ(1−υ)δp jF
∗
,kki

(10)

Instead of the scalar weak form of Eq. (1), as used for the
displacement BIE, we may also write a vector weak form
of Eq. (1), by using the tensor test functions u∗p

i, j (x,ξξξ)
in Eq. (8) [as originally proposed in Okada, Rajiyah,
and Atluri (1989), Okada and Atluri(1994)], and derive
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a non-hypersingular integral equation for tractions in a
linear elastic solid [Han and Atluri (2003)],

−tb(x) =
∫

∂Ω
tq(ξξξ)na(x)σ∗q

ab(x,ξξξ) dS

+
∫

∂Ω
Dpuq(ξξξ)na(xxx)Σ∗

abpq(x,ξξξ) dS
(11)

where Σ∗
abpq is another derived kernel function, which

were first given by Han and Atluri [2]

Σ∗
i jpq(x,ξξξ) = Ei jklenlpσ∗k

nq(x,ξξξ)

= µ2[(einpF, jqn −einpδ jqF,bbn

+eintetqke jpmF,kmn)
+υ(einqδ jpF,bbn +e jnqδipF,bbn)]

(12)

and the surface tangential operator Dt is defined as,

Dt = nrerst
∂

∂ξs
(13)

The singularity of u∗p
i is O(1/r), as the second derivatives

of F∗are included. The singularities are O(1/r2) for σ∗p
i j

and Σ∗
abpq because of the third derivatives of F∗. There-

after, the displacement and traction BIEs in Eqs. (9)
and (11) have the non-hyper-singularities only. It should
be noted that these two integral equations for up(x) and
tb(x) are derived independently of each other. On the
other hand, if we derive the integral equation for the
displacement-gradients, by directly differentiating up(x)
in Eq. (9), a hyper-singularity is clearly introduced due
to the forth derivatives.

Furthermore, Eqs. (9) and (11) may be satisfied in weak-
forms over the boundary surface ∂Ω, by using a Galerkin
scheme. One may obtain the symmetric Galerkin dis-
placement and traction BIEs after applying Stokes’ theo-
rem, as

1
2

∫
∂Ω

t̂p(x)up(x)dSx

=
∫

∂Ω
t̂p(x)dSx

∫
∂Ω

t j(ξξξ)u∗p
j (x,ξξξ) dSξ

+
∫

∂Ω
t̂p(x)dSx

∫
∂Ω

Di(ξξξ)u j(ξξξ)G∗p
i j (x,ξξξ) dSξ

+
∫

∂Ω
t̂p(x)dSx

∫ CPV

∂Ω
ni(ξξξ)u j(ξξξ)φ∗p

i j (x,ξξξ) dSξ

(14)

− 1
2

∫
∂Ω

tb(x)ûb(x)dSx

=
∫

∂Ω
Daûb(x)dSx

∫
∂Ω

tq(ξξξ)G∗q
ab(x,ξξξ) dSξ

−
∫

∂Ω
tq(ξξξ) dSξ

∫ CPV

∂Ω
na(x)ûb(x)φ∗q

ab(x,ξξξ)dSx

+
∫

∂Ω
Daûb(x)dSx

∫
∂Ω

Dpuq(ξξξ)H∗
abpq(x,ξξξ) dSξ

(15)

where G∗p
i j , φ∗p

i j and H∗
i jpq are kernel functions and given

as [Han and Atluri (2003)],

For 3D problems,

G∗p
i j (x,ξξξ) =

1
8π(1−υ)r

[(1−2υ)eip j +eik jr,kr,p] (16a)

φ∗p
i j (x,ξξξ) =

1
4πr2 δp jr,i (16b)

H∗
i jpq(x,ξξξ) =

µ
8π(1−υ)r

[4υδiqδ jp −δipδ jq

−2υδi jδpq +δi j r,pr,q +δpqr,ir, j

−2δipr, jr,q−δ jqr,ir,p]

(16c)

For 2D problems,

G∗p
i j (x,ξξξ) =

1
4π(1−υ)

[−(1−2υ) lnr eip j +eik jr,kr,p]

(17a)

φ∗p
i j (x,ξξξ) =

1
2πr

δp jr,i (17b)

H∗
i jpq(x,ξξξ) =

µ
4π(1−υ)

[−4υ lnrδiqδ jp

+ lnrδipδ jq +2υ lnrδi jδpq

+δi j r,pr,q +δpqr,ir, j

−2δipr, jr,q−δ jqr,ir,p]

(17c)

For a crack problem shown in Fig. 1, the boundary sur-
face ∂Ω includes the prescribed displacement surface Su,
the prescribed traction surface St , and the crack surface
Sc. We apply the weak-form displacement integral equa-
tion on the prescribed displacement boundary surfaces Su

and obtain the formulation as:
1
2

∫
Su

t̂p(x)up(x)dSx

=
∫

Su

t̂p(x)dSx

∫
∂Ω

t j(ξξξ)u∗p
j (x,ξξξ) dSξ

+
∫

Su

t̂p(x)dSx

∫
∂Ω

Di(ξξξ)u j(ξξξ)G∗p
i j (x,ξξξ) dSξ

+
∫

Su

t̂p(x)dSx

∫ CPV

∂Ω
ni(ξξξ)u j(ξξξ)φ∗p

i j (x,ξξξ) dSξ

(18)
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tS p

uS

u

cS

Ω

Figure 1 : A linear elastic isotropic domain containing
cracks (Original problem)

We apply the weak-form traction integral equation on the
prescribed traction boundary surfaces St and obtain the
similar formulation as:

− 1
2

∫
St

tb(x)ûb(x)dSx

=
∫

St

Daûb(x)dSx

∫
St+Su

tq(ξξξ)G∗q
ab(x,ξξξ) dSξ

−
∫

St+Su

tq(ξξξ) dSξ

∫ CPV

St

na(x)ûb(x)φ∗q
ab(x,ξξξ)dSx

+
∫

St

Daûb(x)dSx

∫
∂Ω

Dpuq(ξξξ)H∗
abpq(x,ξξξ) dSξ

(19)

We also apply the weak-form traction integral equation
on the crackSc, which are conceived as a set of prescribed
traction boundary surfaces. We have

− 1
2

∫
Sc

tb(x)ûb(x)dSx

=
∫

Sc

Daûb(x)dSx

∫
St+Su

tq(ξξξ)G∗q
ab(x,ξξξ) dSξ

−
∫

St+Su

tq(ξξξ) dSξ

∫ CPV

Sc

na(x)ûb(x)φ∗q
ab(x,ξξξ)dSx

+
∫

Sc

Daûb(x)dSx

∫
∂Ω

Dpuq(ξξξ)H∗
abpq(x,ξξξ) dSξ

(20)

The SGBEM requires the C0 continuous trial and testing
functions over the boundary surface ∂Ω = Su ∪ St ∪ Sc.
This can be satisfied after discretization. Special atten-
tion should be paid to the crack surfaces. The displace-
ment discontinuities, u(x) = u+(x+)− u−(x−), must be
zero around the crack fronts where u+(x+) = u−(x−). A

special treatment is also required to enforce the C0 con-
tinuities for the surface cracks that intersect the normal
boundary surface Su ∪ St . In the present work, quarter-
point singular elements are adopted and the displacement
discontinuities are set to zero explicitly for the crack
front. In addition, the weak-form can be also written for
the local sub boundary, by using the generate MLPG ap-
proach. It has been presented in [Alturi, Han and Shen
(2003)].

3 Schwartz-Neumann Alternating Method

The Schwartz-Neumann alternating method is based on
the superposition principle. The solution on a given do-
main is the sum of the solutions on two other overlap-
ping domains. The alternating method converges uncon-
ditionally when there are only traction boundary condi-
tions specified on the body. In the present work, the over-
lapping domains are the given finite domain, but with-
out the cracks; a local portion of the original given do-
main as described below. The local subdomain can be
selected to include only the traction boundary conditions
so that the alternating procedure converges uncondition-
ally. To take advantages of both the FEM and SGEM,
the FEM, which is a robust method for large-scale elas-
tic problems, is used to solve the whole uncracked global
structure. The SGBEM, which is most suitable the crack
analyses, is used for modeling a local finite-sized subdo-
main containing embedded or surface cracks. The size
of SGBEM domain is also limited in order to improve
the computational efficiency, by avoiding an overly-large
fully populated system matrix.

We consider a structure containing cracks, as shown in
Fig. 1. The crack surfaces are denoted collectively as
Sc. The alternating method uses the following two prob-
lems to solver the original one. Let us define that the
domain for the FEM, denoted as ΩFEM in Fig. 2(a), is
the same as the original domain Ω but no cracks are in-
cluded. All the prescribed tractions p are applied to the
FEM domain on SFEM

t , as well as all the prescribed dis-
placement u on SFEM

u . Another domain ΩSGBEM is de-
fined for the SGBEM as shown in Fig. 2(b), which is a
local finite-sized subdomain containing all the cracks. It
is clear that the same crack surfaces are inherited from
the original ones, as SSGBEM

c . We define the boundary
conditions in a way that the shared overall boundary be-
tween these two domains is defined as the traction free
surface of the SGBEM domain, denoted as SSGBEM

t with
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pSGBEM = 0. The intersection surface SI is treated as the
boundary of the SGBEM domain with the prescribed dis-
placements, denoted as SSGBEM

u . We can also restrict all
prescribed displacements, uSGBEM, to be zero on SSGBEM

u .
One obvious advantage of this approach is that two over-
lapping domains are limited to the local portion contain-
ing the cracks, without any restriction to the remaining
portion. This distinguishing feature makes it possible
that all other structure elements can be used in the FEM
domain, which are widely used in industry. It also al-
lows the present alternating approach to be implemented
within any commercial FEM solver without any restric-
tion. Another advantage is that the independence of the
crack model and finite element model of the body allows
one to easily change the crack model in order to simulate
crack growth or perform the parametric study.

To solve the original problem, the superposition of the
two alternate problems, FEM and SGBEM, yields the
original solution for the prescribed displacements u and
tractions p with cracks. The detailed procedures are de-
scribed as follows.

1. Using FEM, solve the problem on domain ΩFEM

with all externally prescribed displacements and trac-
tions, but without the cracks. The tractions on crack sur-
faces SSGBEM

c can be obtained as pSGBEM
c ≡−pFEM

c .

2. Using SGBEM, solve the local problem on domain
ΩSGBEM only with the tractions on the crack surface. The
prescribed displacements uSGBEMon SSGBEM

u are set to
zero as well as the zero prescribed tractions pSGBEMon
SSGBEM

t . The only loads are the non-zero tractions on the
crack surfaces, i.e., pSGBEM

c on SSGBEM
c . Then the trac-

tions on the intersection surface SI are obtained as a part
of the SGBEM solution explicitly, denoted as pSGBEM

u on
SSGBEM

u .

3. Applying the tractions on the intersection surface
as the residual forces to the FEM domain, denoted as
pFEM ≡ −pSGBEM

u on SI in Fig. 2(c), re-solve the FEM
problem and obtain the traction pSGBEM

c on crack surfaces
SSGBEM

c .

4. Repeat steps 2 and 3 until the residual load pFEM is
small enough.

5. By adding the SGBEM solution to the FEM one, the
original one is obtained.

We now examine the solution with the given boundary
and loading conditions for the original problem (denoted
by superscript Org):

t
FEM
t SS = pp FEM =

u
FEM
u SS =

uu FEM =

cS

FEMΩ

IS
FEM
cp

(a) the uncracked body for FEM

SGBEM
tS

0=SGBEMp

c
SGBEM
c SS =

SGBEMΩ

ISGBEM
u SS =

0=SGBEMu SGBEM
cp

SGBEM
up

(b) the local SGBEM domain containing cracks

t
FEM
t SS =

u
FEM
u SS =

cS

FEMΩ

IS

FEMp

(c) FEM model subjected to residual loads

0
tS ppFEM =

uS

uu FEM =

cS

Ω

IS
FEM
c

SGBEM
c pp −=

0=

=
SGBEM

FEM

p

pp

SGBEMFEM pp −=

0=SGBEM

FEM

u

u

(d) alternating solution for the original problem

Figure 2 : Superposition principle for FEM-SGBEM al-
ternating method
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i) for the given traction on St , we have pFEM = p and
pSGBEM = 0 and get

pOrg = pFEM + pSGBEM = p on St (21)

ii) for the given displacement on Su, the SGBEM domain
does not contain any portion of Su and thus, we obtain

uOrg = uFEM = u on St (22)

iii) for the crack surface Sc, we define that tractions for
SGBEM modelpSGBEM

c equal to −pFEM
c from the FEM

solution, and thus the tractions on crack surfaces are zero
as in the original problem, i.e.,

pOrg
c = pFEM

c + pSGBEM
c = 0 on Sc (23)

iv) for the intersection surface SI , we define that the resid-
ual tractions on FEM model pFEM equals to −pSGBEM

from the SGBEM solution, and obtain

pOrg
c = pFEM

c + pSGBEM
c = 0 on SI (24)

We also specify that the zero displacements for the
SGBEM model, i.e. uSGBEM = 0 on SI , and thus, there no
displacement discontinuities along the intersection sur-
face,

uOrg = uFEM on SI (25)

As shown in Fig. 2 (d), the solution obtained here satis-
fies all the boundary and loading conditions for the orig-
inal problem. From the uniqueness of the elastic linear
problem, we obtain the solution for the original problem

From a computational point of view, the present approach
is very efficient in saving the CPU time. This results
from two reasons. The first reason is that some terms
for SGBEM equations are ignored, and Eqs. (18), (19)
and 3 can be simplified as follows

For weak-form displacement integral on SSGBEM
u

0 =
∫

Su

t̂p(x)dSx

∫
Su

t j(ξξξ)u∗p
j (x,ξξξ) dSξ

+
∫

Su

t̂p(x)dSx

∫
St+Sc

Di(ξξξ)u j(ξξξ)G∗p
i j (x,ξξξ) dSξ

+
∫

Su

t̂p(x)dSx

∫ CPV

St+Sc

ni(ξξξ)u j(ξξξ)φ∗p
i j (x,ξξξ) dSξ

(26)

For weak-form traction integral on SSGBEM
t

0 =
∫

St

Daûb(x)dSx

∫
Su

tq(ξξξ)G∗q
ab(x,ξξξ) dSξ

−
∫

Su

tq(ξξξ) dSξ

∫ CPV

St

na(x)ûb(x)φ∗q
ab(x,ξξξ)dSx

+
∫

St

Daûb(x)dSx

∫
St+Sc

Dpuq(ξξξ)H∗
abpq(x,ξξξ) dSξ

(27)

For weak-form traction integral on SSGBEM
c

− 1
2

∫
Sc

tb(x)ûb(x)dSx

=
∫

Sc

Daûb(x)dSx

∫
Su

tq(ξξξ)G∗q
ab(x,ξξξ) dSξ

−
∫

Su

tq(ξξξ) dSξ

∫ CPV

Sc

na(x)ûb(x)φ∗q
ab(x,ξξξ)dSx

+
∫

Sc

Daûb(x)dSx

∫
St+Sc

Dpuq(ξξξ)H∗
abpq(x,ξξξ) dSξ

(28)

Keq = 4

√
K4

I +6K2
I K2

II +K4
II +

K4
III

(1−υ)2 (29)

The second reason is that the residual forces applied to
the FEM problem are obtained as a part the SGBEM
solution explicitly. There is no extra computer time to
determine the forces, which is normally needed when
the alternating procedure is performed between the solu-
tions for the uncracked finite body and the infinite body
containing cracks. The singular residual forces may be
encountered when the surface cracks are included the
later cases, which introduces the numerical errors dur-
ing the alternating procedures. Therefore the surface
crack solutions near the free surface are not accurate,
which is well known as the boundary-layer effect. In
some researches, the fictitious extended cracks are used
with imaginary tractions to reduce such errors [Nishioka
and Atluri (1983)]. Unfortunately, the fictitious extended
portion and the imaginary tractions are hard to be defined
when the arbitrary non-planar surface cracks are consid-
ered. In the present work, the original solution is ob-
tained accurately by using the non-singular alternating
method with the weak singular SGBEM.

4 Automatic crack growth

The crack growth analysis plays an important role in the
damage tolerance analysis for determining the life of the
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2h

2w

t

2a

σ

σ

0

0

ϕ
2a

Figure 3 : a semi-circular crack in a plate under tension

Figure 4 : Mesh of a semi-circular crack in a plate for
the SGBEM

structure. Several models can be used to predict the di-
rection and extension of cracks. The models for crack
extension use in the equivalent K factorsfor the mixed
mode and the stress ratio, such as the Paris, Walker and
Forman fatigue models. In the current implementation,

2a

4a

2a

(a)

(b)

(c)

Figure 5 : Models of a semi-circular crack in a plate for
FEM-SGBEM alternating method: (a) local finite body
defined in the plate, (b) the FEM model without the crack
and (c) the local SGBEM model with the crack
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Figure 6 : Normalized stress intensity factors (KI/
√

πa) for a semi-circular crack in a plate

the equivalent K factor is calculated as

Thereafter, the rate of crack extension is governed by the
corresponding models as

da
dN

= f (Keq,R, ...) (30)

The maximum circumfeential stress theory is used for the
direction, as

KI sinα+KII(3cosα−1) = 0 (31)

Once the crack extension and direction are obtained, the
crack can be advanced by adding another layer of the el-
ements around the crack front to grow the crack. As one
of the most important feature of the alternating method,
the FEM model keeps unchanged and is solved only once
during the crack growth because the models for the FEM
and BEM are fully decoupled. It makes that the alternat-
ing method is very efficient for crack-growth problems.
In addition, the mesh generation is robust because only
the 3D surface mesh is required for the advanced crack
surface, instead of embedding the new crack surface into
a finite body.

5 Numerical Examples

5.1 Semi-circular surface cracks

In order to verify the accuracy of the present alternating
method for treating surface cracks in finite bodies, we
first consider a semi-circular surface crack in a plate as
shown in Fig. 3. Uniform tensile stresses σ0 are applied
at two opposite faces of the plate in the direction perpen-
dicular to the cracks. a is the radius of the semi circular
crack. The plate configuration considered is character-
ized by the geometric ratios h

a = 5, w
a = 5 and t

a = 2.5.
The passion ratio ν = 0.3 is chosen.

We first use the SGBEM method to simulate the en-
tire problem with the mesh shown in Fig. 4. Then we
solve the problem with the alternating method. The FEM
model is created for the uncracked body, shown in Fig.
5(b), with the uniform tensile stresses being applied at
the top and bottom surfaces. The local SGBEM model is
also created in the plate, shown in Fig. 5(a). It is similar
to the model in Fig. 4 for pure SGBEM solution, so that
we create the mesh for this local finite body with similar
meshes for the boundary and crack surfaces. The front
and back surfaces are free and others are the prescribed
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2h

w

w

a

ϕ
a

σ0

σ0

Figure 7 : a quarter-circular crack in a square bar under
tension

displacement ones.

This problem is a pure mode-I problem and has been
solved by using the FEM [Raju and Newman (1979)]
and the SGBEM [Frangi, Novati, Sprinthetti and Rovizzi
(2002)]. The analytical solution is available for the in-
finite plate. The ratios chosen for this prolem are large
enough to represent a crack in the infinite plate. As
shown in Fig. 6, a comparison of the normalized stress
intensity factors by using the SGBEM-FEM alternat-
ing method with the referenced solutions shows a good

Figure 8 : Mesh of a quarter-circular crack in a square
bar for the SGBEM

agreement for all crack-front locations. It is well known
that that the stress intensity factors tend to zero in a
boundary layer where the crack front approaches free
surface of the body, when a surface crack breaks the outer
surface at a right angle. This effect is also confirmed by
using alternating method.

5.2 A quarter-circular crack in a square bar

The second example for the surface crack is a square bar
which contains a quarter-circular crack, as shown in Fig.
7. Uniform tensile stresses σ0 are applied at the two ends.
Let a denote the radius of the quarter-circular crack, and
the other dimensions are defined as w

a = 5 and h
a = 4. The

Poisson ratio ν = 0.3 is chosen here. The dimensions are
chosen to be the same as those used in Li, Mear and Xiao
(1998) for comparison purpose.

Again, we use both the SGBEM for the entire domain;
and the FEM-SGBEM alternating method to solve this
problem with the meshes in Figs. 8 and 9, respectively.
The local SGBEM domain is created by truncating the
square bar as shown in Fig. 9(a). Then the top and
bottom surfaces are subjected to the zero prescribed dis-
placements and others are free.
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Figure 9 : Models of a quarter-circular crack in a square bar for FEM-SGBEM alternating
method: (a) local finite body defined in the plate, (b) the FEM model without the crack and
(c) the local SGBEM model with the crack
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Figure 11 : a corner crack at a circular hole in a finite-thickness plate under tension

2a

4a

(a) (b) (c)

Figure 12 : Models of a corner crack at a circular hole in a finite-thickness plate for FEM-SGBEM alternat-
ing method: (a) local finite body defined in the plate, (b) the FEM model without the crack and (c) the local
SGBEM model with the crack
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Figure 14 : Inclined semi-circular surface crack specimen
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Numerical results are displayed in Fig. 10 in terms of
the normalized stress intensity factor contribution along
the crack front. A good agreement is observed, as well
as those points near the free surface. Again the boundary
effect is also evidenced by the alternating method.

5.3 Corner crack at a circular hole in a finite-
thickness plate

As the third example, the corner crack at a circular hole
in a plate is considered and shown in Fig. 11. This exam-
ple has been considered by many investigators for three
dimensional fracture analyses with various methods. The
geometry is characterized by the ratios: h

t = w
t = 8,

R
t = 1.5 and a

t = 0.5. The passion ratio is taken as
ν = 0.3.

This problem is analyzed by using the alternating method
only. The meshes adopted are depicted in Fig. 12(b)-
(c), in which only half of the specimen was analyzed due
to symmetry. The FEM model has about 3300 degrees
of freedom (DOFs). In the contrast, the FEM models
used in Tan, Newman and Bigelow (1996) had more than
16000 DOFs in conjunction with special singularity el-
ements for the crack front. The local SGBEM model is
cut by three planar surfaces around the crack with zero
prescribed displacements, as shown in Fig. 12 (a). All
boundary and crack surfaces are discretized with about
500 quadrilateral elements, and with 24 elements along
the crack front.

The normalized stress intensity factors along the crack
front are plotted in Fig. 13. The results are compared
to the available published solutions [Tan, Newman and
Bigelow (1996)]. The boundary effects are obtained for
two ends of the crack front near to the free surface, and
the boundary layer at the lateral free surface is thinner
than the FEM solution.

5.4 Nonplanar fatigue growth of an inclined semi-
circular surface crack in a plate

Fatigue-growth of an inclined surface crack in a plate is
considered. As shown in Fig. 14, the modified ASTM
E740 specimen has been tested for the mixed-mode fa-
tigue growth [Forth, Keat and Favrow (2002)]. The spec-
imens were taken from actual parts made from 7075-T73
aluminum. The crack orientation φ = 30◦ is used. Max-
imum tensile stresses σ0 = 15.88ksi are applied with a
load ratio R = 0.7. The Forman equation is chosen to
advance the crack and front and determine the fatigue

cycles:

da
dN

= C

(
1− f
1−R

∆K

)n (1−∆Kth/∆K)p

(1−Kmax/Kcrit)
q (32)

where the growth rate da
dN is based on empirical material

constantsC, n, p and q; f depends on the ratio R; ∆Kth is
the threshold value of ∆K; Kcrit is the critical stress inten-
sity factor. This model is details in the reference manual
of NASGARO 3.0 [NASA, NASGRO (2001)]. The ma-
terial constants are taken as C = 1.49×10−8, n = 3.321,
p = 0.5, q = 1.0, KIe = 50ksi

√
in, KIC = 28ksi

√
in,

∆Kth = 3.0ksi
√

in, C+
th = 2.0, C−

th = 1.0, Rcl = 0.7,α =
1.9, Ak = 1.0, Bk = 1.0, Smax/σ0 = 0.3, σY S = 60ksi and
σUTS = 74ksi.

We model the uncracked specimen with the mesh as in
Fig. 15b for FEM. The local SGBEM model is located
in the central portion that contains the inclined surface
crack, as illustrated in Fig. 15a with the attendant mesh
being shown in Fig. 15c. The top and bottom surfaces
are cutting surfaces and subjected to the zero prescribed
displacements while others are free.

First, the initial crack is analyzed and stress intensity fac-
tors are normalized by K0 = σ0

√
πa and shown in Fig. 16.

Good agreements are obtained in comparison with other
results [Shivakumar and Raju (1992); He and Hutchinsen
(2000); Nikishkov, Park and Atluri (2001)].

The crack growth is simulated by adding one layer of
elements along the crack front, in each increment. The
newly added points are determined through the K so-
lutions. 15 advancements are performed. The fatigue
load cycles are calculated and compared with the exper-
imental data [Forth, Keat and Favrow (2002)], shown in
Fig. 17. The normalized stress intensity factors during
the crack growing are given in Fig. 18, which are also
normalized by K0 = σ0

√
πa. KI keeps increasing while

KII and KIII are decreasing during the crack growth. It
confirms that this mixed-mode crack becomes the mode-
I dominated one while growing. The shape of the final
crack is very similar to the experimental photograph in
Fig. 19. It is clear that while the crack, in its initial
configuration, starts out as a mixed-mode crack, after a
substantial growth, the crack configuration is such that it
is in a pure mode-I state.
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0.
5"

(a) (b) (c)

Figure 15 : Models of an inclined surface crack in a tensile plate for FEM-SGBEM alternating method: (a)
local finite body defined in the specimen, (b) the FEM model for the specimen without the crack and (c) the
local SGBEM model with the crack

5.5 Automatic detection of an initial nozzle corner
flaw

As the final example, the initial crack at a nozzle corner
is detected by using the program DTALE, which employs
the present alternating method. The geometries of the
nozzle and of the flaw in a longitudinal plane are shown
in Fig. 20. Two types of initial flaws, as shown in Fig. 21,
one a quarter-circular flaw (MATH) of depth a =9.5cm
and a similar “natural” flaw (EXPR) obtained in a pho-
toelastic test [Smith, Jolles and Peters (1976)] were as-
sumed in the damage tolerance analysis. In most analy-
ses, the experimental results are not available. The shape,
size and orientation of the initial flaw need to be assumed
based on the users’ experience, which is not easy. An al-
ternative way is to do the parametric study by creating
many initial flaws based on the combination of the pa-
rameters of the shape, size, and orientation. From the
computational point of view, it is not efficient, if other
parameters are also considered including load cases and
boundary conditions.

In the present study, one may determine the initial flaw by
utilizing the automatic crack-growth function in DTALE.
At the beginning, a smaller initial crack is introduced as
the crack seed, and the program grows the crack seed
with the same loading and boundary conditions. The
present study, the Walker’s fatigue model is used to grow

the crack seed, without the threshold value of the stress
intensity factor. After several advancements of the crack
seed, the larger crack flaw can be obtained with the
proper shape and orientation. As shown in Fig. 21, an
initial crack seed is given as the black portion. The au-
tomatically detected portion of the initial flaw is shown
in gray, which agrees with the experimental results. The
fatigue model for the small crack can be used here for
more accurate initial crack detection, because it fits the
development of the initial crack well.

6 Conclusions

In this paper the Schwartz-Neumaan alternating method
has been extended to analyze surface cracks. It is shown
that the singular traction integral is avoided during the
alternating procedure between the FEM and SGBEM,
when both solutions are based on finite bodies. This ap-
proach shows a strong computational competitiveness, in
comparison to the normal alternating methods, by avoid-
ing the stress calculation on the boundary surfaces of
FEM models. Indeed, the alternating procedure con-
verges unconditionally by imposing the proposed pre-
scribed displacements and tractions in the present ap-
proach. The accuracy and efficiency of the proposed ap-
proach have been verified on some 3D problems with
published solutions by using other methods. The soft-
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Figure 19 : Final crack of an inclined surface crack in a tensile plate: (a) the final crack after 15 increments by using
FEM-SGBEM alternating method, (b) the photograph of the final crack taken from the specimen, (c) the final crack
in the uncracked body, (d) the intersection path of the final crack with the free surface of the specimen, ABCD
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Figure 20 : Surface-flaw near a pressure-vessel-nozzle
junction

Figure 21 : Geometry of an intermediate-test-vessel
nozzle configuration

Figure 22 : Automatic initial crack detection
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ware pacakge, DTALE, has been developed based on the
present method. DTALE can be seen to have a wide
industrial application, in estimating the life of a variety
of safety-critical structures. With DTALE, the effect of
residual stresses in a structure, due to processes such as
welding, cold-working, shot-peening, etc., on the life of
the structure, including a possible life-enhancement, can
also be assessed.
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Simulation of a 4th Order ODE: Illustration of Various Primal & Mixed MLPG
Methods

S. N. Atluri1 and Shengping Shen1

Abstract: Various MLPG methods, with the MLS ap-
proximation for the trial function, in the solution of a 4th

order ordinary differential equation are illustrated. Both
the primal MLPG methods and the mixed MLPG meth-
ods are used. All the possible local weak forms for a 4th

order ordinary differential equation are presented. In the
first kind of mixed MLPG methods, both the displace-
ment and its second derivative are interpolated indepen-
dently through the MLS interpolation scheme. In the sec-
ond kind of mixed MLPG methods, the displacement,
its first derivative, second derivative and third deriva-
tive are interpolated independently through the MLS in-
terpolation scheme. The nodal values of the indepen-
dently interpolated derivatives are expressed in terms of
nodal values of the independently interpolated displace-
ments, by simply enforcing the strain-displacement rela-
tionships directly by collocation at the nodal points. The
mixed MLPG methods avoid the need for a direct eval-
uation of high order derivatives of the primary variables
in the local weak forms, and thus reduce the continuity-
requirement on the trial function. Numerical results are
presented to illustrate the effectiveness of the primal, as
well as two kind of mixed MLPG methods. It is con-
cluded that the mixed MLPG methods are very cost-
effective.

keyword: MLPG, Mixed Methods, Moving Least
Squares, Local Weak Forms.

1 Introduction

Most problems in mechanics are characterized by partial
differential equations, in space and time. The develop-
ment of approximate methods for the solution of these
PDEs has attracted the attention of engineers, physicists

1 Center for Aerospace Research & Education
University of California at Irvine
5251 California Avenue, #140
Irvine, CA 92617, USA

and mathematicians for several decades. In the begin-
ning, the finite difference methods were extensively de-
veloped to solve these equations. As being derived from
the variational principles, or their equivalent weak-forms,
the finite element methods have emerged as the most suc-
cessful methods to solve these partial differential equa-
tions, over the past three decades. Recently, the so-
called meshless methods of discretization have become
very attractive, as they are efficient for solving PDEs
by avoiding the tedium of mesh-generation, especially
for those problems having complicated geometries, as
well as those involving large strains. As a systematic
framework for developing various truly-meshless meth-
ods, the Meshless Local Petrov-Galerkin (MLPG) ap-
proach has been proposed as a fundamentally new con-
cept [Atluri and Zhu (1998); Atluri and Shen (2002a, b);
Atluri (2004)]. The generality of the MLPG approach,
based on the symmetric or unsymmetric weak-forms of
the PDEs, and using a variety of interpolation methods
(trial functions), test functions, and integration schemes
without background cells, has been widely investigated
[Atluri and Shen (2002a, b); Atluri(2004)].

Remarkable successes of the MLPG method have been
reported in solving the convection-diffusion problems
[Lin and Atluri (2000)]; fracture mechanics [Batra and
Ching (2002)]; Navier-Stokes flows [Lin and Atluri
(2001)]; and plate bending problems [Long and Atluri
(2002)]. Recently, the MLPG method has made some
strides, and it is applied successfully in studying strain
gradient materials [Tang, Shen and Atluri, (2003)), three
dimensional elasticity problems [Li, Shen, Han and
Atluri (2003), Han and Atluri (2004a)], elstodynamics
[Han and Atluri (2004b)], and multiscale structure and
nanomechanics [Shen and Atluri (2004, 2005)]. These
research successes demonstrate that the MLPG method is
one of the most promising alternative methods for com-
putational mechanics. The interrelation of the various
meshless approaches, and the recent developments and
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applications of the MLPG methods can be founded in
Atluri (2004).

Very recently, Atluri, Han and Rajendran (2004) devel-
oped a mixed MLPG method for the 2nd order partial
differential equation system of elasticity, in which both
strains and displacements were independently interpo-
lated through meshless interpolation schemes. The nodal
values of strains were expressed in terms of the inde-
pendently interpolated nodal values of displacements, by
simply enforcing the strain-displacement relationships
directly by collocation at the nodal points. The mixed
MLPG method avoids the direct differentiation of the
trial function (and the evaluation of these directly derived
derivatives at each Gauss point in the integration of the
weak form), and reduces the continuity-requirement on
the trial function by one-order. A smaller interpolation
domain can be used in the meshless approximation with a
lower-order polynomial basis. The mixed MLPG method
improves very much the efficiency of the primal MLPG
method. In this paper, we will employ this idea to solve
the 4th order ordinary differential equation.

The 4th order ordinary differential equation is more com-
plicated. For the 4th order ordinary differential equa-
tion, in the conventional displacement-based approaches
in FEM, the interpolation of displacement requires C1

continuity (in order to ensure convergence of the finite el-
ement procedure for 4th order theories), which inevitably
involves very complicated shape functions. These shape
functions involve large numbers of degrees of freedom
in every element, including nodal displacements, nodal
rotations (i.e. first order gradients of displacement),
and even higher order derivatives. C1 continuous meth-
ods are mostly feasible only for one-dimensional prob-
lems. The standard approach for solving Bernoulli-Euler
beam problems is by employing C1 continuous Her-
mite cubic shape functions, interpolating both displace-
ments and rotations (i.e., slopes, the 1st derivative). For
two dimensional problems, such as involving plate and
shell analysis, C1 continuous methods are very compli-
cated, and formulations for three-dimensional problems
become more or less intractable. The high computa-
tional cost and large number of degrees of freedom soon
place such formulations beyond the realm of practical-
ity. Atluri, Cho and Kim (1999) presented an analysis of
thin beam problems using the MLPG method with a gen-
eralized moving least squares (GMLS) approximation.
Then, Cho & Atluri (2001) extended it to the shear flexi-

ble beams based on a locking-free formulation. Raju and
Phillips (2003) applied MLPG with the GMLS approx-
imation to a continuous beam problem to evaluate their
effectiveness, and discussed the effects of various param-
eters on the numerical results clearly and systematically.
Long & Atluri (2002) analyzed the bending problem of a
thin plate by means of MLPG with the MLS approxima-
tion.

In this paper, we will illustrate various MLPG methods
with the MLS approximation for the simulation of the
4th order ordinary differential equation (of a beam on
an elastic foundation), including both the primal MLPG
methods and the mixed MLPG methods. All the possi-
ble local weak forms for a 4th order ordinary differential
equation are given in this paper.

The outline of the paper is as follows. In Section 2, the
meshless interpolation-the moving least square method
is described briefly for the sake of completeness. The
local weak forms and the corresponding primal MLPG
methods are discussed in Section 3, and their numerical
results are also presented. In Section 4, the first kind
of mixed MLPG methods and their numerical results are
given. In the first kind of mixed MLPG methods, both the
displacement and its second derivative are interpolated
independently through meshless interpolation schemes.
The second kind of mixed MLPG methods and their nu-
merical results are presented in Section 5. In the second
kind of mixed MLPG methods, the displacement, its first
derivative, second derivative and third derivative are all
interpolated independently through meshless interpola-
tion schemes. The conclusions and discussions are given
in Section 6.

2 Meshless Interpolation: the Moving Least Square
Method

In general, meshless methods use a local interpolation,
or an approximation, to represent the trial function, using
the values (or the fictitious values) of the unknown vari-
able at some randomly located nodes in the local vicin-
ity. A variety of local interpolation schemes that inter-
polate the data at randomly scattered points (without the
need for a mesh) are currently available [Atluri and Shen
(2002a, b), Atluri (2004)].

The moving least-square method is generally considered
to be one of the best schemes to interpolate data with
a reasonable accuracy. Basically the MLS interpolation
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does not pass through the nodal data. Consider a domain
in question with control points for boundaries (i.e. nodes
on boundaries) and some scattered nodes inside, where
every node has its undetermined nodal coefficient (fic-
titious nodal value) and an influence radius (radius for
local weight function). Now for the distribution of trial
function at any point x and its neighborhood Ωx located
in the problem domain Ω, uh(x) may be defined by

uh (x) = pT (x)a(x) ∀x ∈ Ωx (1)

where pT (x)=[p1(x), p2(x), . . . ,pm(x)] is a complete
monomial basis of order m, and a(x) is a vector contain-
ing coefficients a j(x), j=1, 2, . . . ,m which are functions
of the space co-ordinates x. The commonly used bases in
1-D are the linear basis (m=2), due to their simplicity. In
the present 4th order problem, we will also employ the
quadratic basis (m=3)

pT (x) =
[

1 x x2
]

(2)

and the cubic basis (m=4)

pT (x) =
[

1 x x2 x3
]

(3)

The coefficient vector a(x) is determined by minimizing
a weighted discrete L2 norm, which can be defined as

J (x) =
N

∑
I=1

wI (x)
[
pT (xI)a(x)− ûI]2 (4)

where wI(x), is a weight function associated with the
node I, with wI(x) > 0 for all x in the support of wI(x), xI

denotes the value of x at node I, N is the number of nodes
in Ωx for which the weight functions wI(x) > 0. Here it
should be noted that ûI , I=1, 2,. . . , N, in equation (4),
are the fictitious nodal values (undetermined nodal coef-
ficients), and not the exact nodal values of the unknown
trial function uh(x), in general.

Solving for a(x) by minimizing J in equation (4), and
substituting it into equation (1), give a relation which
may be written in the form of an interpolation function
similar to that used in the FEM, as

uh (x) =
N

∑
I=1

φI (x) ûI , uh (xI) ≡ uI �= ûI, x ∈ Ωx (5)

where

φI (x) =
m

∑
j=1

p j (x)
[
A−1 (x)B(x)

]
jI (6)

with the matrix A(x) and B(x) being defined by:

A(x) =
N

∑
I=1

wI (x)p(xI)pT (xI) (7)

B(x) = [w1 (x)p(x1) , w2 (x)p(x2) , · · · , wN (x)p(xN)]
(8)

Equation (6) can be rewritten as

ΦΦΦ(x) = αααT (x)B(x) (9)

with

Aααα = p (10)

The partial derivatives of ααα are obtained through the re-
lations:

Aααα,x = p,x −A,xααα (11)

Aααα,xx = p,xx −A,xxααα−2A,xααα,x (12)

ααα,xxx = p,xxx −A,xxxααα−3A,xxααα,x −3A,xααα,xx (13)

Now, the partial derivatives of φI(x) are obtained as

φI
,x = αααT

,xBI +αααT BI,x (14)

φI
,xx = αααT

,xxBI +2αααT
,xBI,x +αααT BI,xx (15)

φI
,xxx = αααT

,xxxBI +3αααT
,xxBI,x +3αααT

,xBI,xx +αααT BI,xxx (16)

in which BI is the Ith column of matrix B. Thus, the
derivatives of φI(x) become rather complicated.

The nodal shape function is complete up to the order of
the basis. The smoothness of the nodal shape function
φI(x) is determined by that of the basis and of the weight
function. The choice of the weight function is more or
less arbitrary as long as the weight function is positive
and continuous. The following weight function is con-
sidered in the present work:

wI(x) =

⎧⎪⎪⎨
⎪⎪⎩

1−
p

∑
k=1

ak

(
dI
rI

)k

0

0 ≤ dI ≤ rI = ρIhI

dI > rI = ρIhI

(17)
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where dI = |x − xI | is the distance from node xI to point
x, hI in the nodal distance, ρI is the scaling parameter
for the size of the sub-domain ΩI

tr , and p is the order
of spline function. The coefficients ak are obtained by
taking the following boundary conditions:

⎧⎨
⎩

wI(dI/rI = 0) = 1, m0 = 0

∂m0 wI(dI/rI=0)
∂xm0 = 0, m0 ≥ 1

(18)

and⎧⎨
⎩

wI(dI/rI = 1) = 0, m1 = 0

∂m1 wI(dI/rI=1)
∂xm1 = 0, m1 ≥ 1

(19)

where p = m0 +m1 +1. The form of the weight functions
may be changed by the geometry of the sub-domain ΩI

tr
over which the weight function is non-zero. Since the
weight function is a type of a polynomial, the “nodal
shape function” given in equation (6) has the charac-
teristics of a rational function. One can easily obtain a
global Cl continuity up to a desired order l if the order of
spline is changed. Therefore, the Cl continuity depends
upon value of m0 and m1 in equations (18) and (19), i.e.
φ(x) ∈ Cmin(m0,m1) if m0 is even; φ(x) ∈ Cmin(m0+1,m1) if
m0 is odd. It is very important to preserve the smoothness
of the derivatives of shape functions, because discontinu-
ities and vertices in the derivatives of the shape functions
make numerical integration difficult. In this paper, we
choose a 4th order spline function (C2)

wI (x)=

{
1−6

(
dI
rI

)2
+8
(

dI
rI

)3 −3
(

dI
rI

)4
, 0 ≤ dI ≤ rI

0, dI ≥ rI

(20)

as well as a 7th order spline function (C3),

wI (x) =

1−35

(
dI

rI

)4

+84

(
dI

rI

)5

−70

(
dI

rI

)6

+20

(
dI

rI

)7

(21)

for 0 ≤ dI ≤ rI, as weight functions.

Now, in order to depict its performance, we will employ
the MLS to simulate the following function, which is the

known exact solution of the 4th order differential equa-
tion

d4u
dx4 +u−1 = 0, 0 < x < 1

u = u′′ = 0, x = 0, and 1 (22)

i.e.,

uexact = 1+

⎛
⎝−e−

1√
2

(
cos 1√

2
+e−

1√
2

)
2e

− 1√
2 cos 1√

2
+e

− 2√
2 +1

⎞
⎠e

x√
2 cos

x√
2

+

⎛
⎝ −e−

1√
2 sin 1√

2

2e−
1√
2 cos 1√

2
+e−

2√
2 +1

⎞
⎠e

x√
2 sin

x√
2

+

⎛
⎝ −

(
e
− 1√

2 cos 1√
2
+1
)

2e−
1√
2 cos 1√

2
+e−

2√
2 +1

⎞
⎠e−

x√
2 cos

x√
2

+

⎛
⎝ −e−

1√
2 sin 1√

2

2e−
1√
2 cos 1√

2
+e−

2√
2 +1

⎞
⎠e−

x√
2 sin

x√
2

(23)

In this simulation, the linear basis, and the 7th order
spline function (21) are employed; 20 nodes are dis-
tributed evenly from 0 to 1, the radius of the support
domain of the trial function is taken to be 5.5hI. Thus,
setting:

uexact (xJ) =
20

∑
I=1

φI (xJ) ûI; J = 1, · · · , 20 (24)

and using (6), we obtain the values of ûI. Then we obtain
the interpolation uh (x) for uexact , as:

uh (x) =
20

∑
I=1

φI (x) ûI (25)

Fig. 1 shows the distinction between the exact nodal val-
ues uI of the trial function uh (x), and the fictitious nodal
values ûI. Figs. 2-5 compare the values of the function
uh (x) and its 1st -3rd order derivatives calculated from the
MLS interpolation with the corresponding exact values
obtained from (23). Form these figures, we can see that
the MLS can interpolate the function uexact and its first
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Figure 1 : The distinction between the exact nodal val-
ues uI of the trial function uh (x), and the fictitious nodal
values ûI .
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Figure 2 : The function u.

derivative very well, but it has poor accuracy to inter-
polate the higher order derivatives. Hence, in the weak
forms, we should avoid the appearance of the higher or-
der derivatives of uh (x).

3 Local Weak Forms and Primal MLPG Methods

Consider a 4th order ODE

d4u
dx4 +u−1 = 0 (26)

in domain Ω (0 ≤ x ≤ 1). Equation (26) is actually the
governing equation for a thin beam on an elastic foun-
dation undergoing small deformations, in which u is the
normalized transverse displacement. The boundary con-
ditions at x=0 and x=1 can have several combinations.
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Figure 3 : The first derivative of the function u.
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Figure 4 : The second derivative of the function u.
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Figure 5 : The third derivative of the function u.

The essential boundary conditions are of the form

u = u on Γu (27)
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u′ = u′ on Γ′
u (28)

and the natural boundary conditions are of the form

u′′′ = u′′′ on Γ′′′
u (29)

u′′ = u′′ on Γ′′
u (30)

where Γu, Γ′
u, Γ′′

u, and Γ′′′
u denote the boundary points

where u (deflection), u′ (slope), u′′′ (shear), and u′′ (mo-
ment) are prescribed, respectively. Note that the prescrip-
tions of u & u′′′, and u′ & u′′ are mutually disjoint, i.e.,
when u = u is prescribed, u′′′ becomes the corresponding
reaction, and when u′ = u′ is prescribed, u′′ becomes the
corresponding reaction.

Now, we will give all the local weak forms for equation
(26), which are the basis of the MLPG methods. A gener-
alized local weak form (LWF) of the 4th order differential
equation (26) over a local subdomain Ωs, can be written
as:
∫

Ωs

(
d4u
dx4 +u−1

)
vdx = 0 (31)

The local weak form (31) includes the fourth derivative
of the trial function. If the test function v is taken to be
the Delta function, the collocation method will be derived
from equation (31). In section 2, it is shown that it is too
difficult to obtain the accurate higher order derivatives of
the trial function; moreover, they are not very accurate.
Hence, this weak form is not appropriate for the numeri-
cal implementation. In fact, we did implement the collo-
cation in our numerical experiments; However, we could
not obtain any meaningful results, as was expected (these
numerical results are omitted in this paper).

To obtain an accurate and efficient meshless method, one
should decrease the order of the derivatives of the trial
function in the local weak forms. There are two ways to
reach this goal. One is by means of integrating by parts,
through which the differentiation can be transferred from
the trial function, u, to the test function, v. Then, the
higher order derivatives in the domain integration will
disappear. However, the higher order derivatives of the
trial function still appear in the local boundary integral
(local boundary for 1D problem). This is the primal
MLPG method. Another promising approach is the use
of the “mixed” MLPG approach [Atluri, Han, Rajendran
(2004)], wherein, independent meshless interpolations
are also used for the derivatives, as well as the function

per se. The mixed methods are described in detail in the
next section. In this section, we limit ourselves to the
primal MLPG methods.

3.1 Unsymmetric local weak form 1

By integrating (31) by part once, one obtain:

nx
[
u′′′v

]
Γs
−
∫

Ωs

u′′′v′dx+
∫

Ωs

(u−1)vdx = 0 (32)

where nx [·]Γs
denotes the boundary term and nx is the

outward normal. For one-dimensional problems, the lo-
cal boundary Γs has two points, and nx has the values of
±1. Equation (32) is an unsymmetric weak form, and
the trial function should be C2 continuious. There is a
third derivative of function u in LWF (32). Imposing the
boundary conditions (29), one obtains

nx
[
u′′′v

]
Γsu′′′

+nx
[
u′′′v

]
Γsu

+nx
[
u′′′v

]
Ls

−
∫

Ωs

u′′′v′dx+
∫

Ωs

(u−1)vdx = 0 (33)

where Γsu′′′ is the boundary where u′′′ is prescribed on
the local boundary (Γs ∩ Γ′′′

u ). In general, when a lo-
cal boundary, Γs, intersects a global boundary, Γ, four
boundary condition possibilities exist. These possibili-
ties are Γs ∩Γu, Γs ∩Γ′

u, Γs ∩Γ′′
u , and Γs ∩ Γ′′′

u , and are
denoted as Γsu, Γsu′ , Γsu′′ , and Γsu′′′ , respectively; and Ls

is the other part of the local boundary which is inside
the solution domain. Since the boundary Γu and Γ′′′

u are
mutually disjoint, and are related by Γ = Γu ∪Γ′′′

u , the lo-
cal boundary Γs can be decomposed into disjoint subsets
of Ls, Γsu and Γsu′′′ . By the same reason, it can also be
decomposed into disjoint sunsetsLs, Γsu′ and Γsu′′. By us-
ing these decompositions, along with the boundary con-
ditions (27)-(30), equation (33) is obtained.

In order to simplify the above equation, we can select a
test function v such that it vanishes over Ls, then equation
(33) can be rewritten as∫
Ωs

uvdx−
∫

Ωs

u′′′v′dx+nx
[
u′′′v

]
Γsu

=
∫

Ωs

vdx−nx
[
u′′′v

]
Γsu′′′

(34)

With equation (5), one may discretize the local unsym-
metric weak form (34) as
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N

∑
I=1

∫
Ωs

[
φI (x)v− d3φI (x)

dx3 v′
]
dxûI

+
N

∑
I=1

nx

[
d3φI (x)

dx3 v

]
Γsu

ûI =
∫

Ωs

vdx−nx
[
u′′′v

]
Γsu′′′

(35)

As discussed in Atluri (2004), one may choose the Heav-
iside function as the test function, and obtains

nx
[
u′′′v

]
Γsu

+nx
[
u′′′v

]
Ls

+
∫

Ωs

uvdx

=
∫

Ωs

vdx−nx
[
u′′′v

]
Γsu′′′

(36)

Equation (36) can be discretized as

N

∑
I=1

nx

[
d3φI (x)

dx3 v

]
Γsu

ûI+
N

∑
I=1

nx

[
d3φI (x)

dx3 v

]
Ls

ûI

+
N

∑
I=1

∫
Ωs

φI (x)vdxûI =
∫

Ωs

vdx−nx
[
u′′′v

]
Γsu′′′

(37)

In this study, the collocation method is used to impose
the boundary conditions. For boundary node xI , one has

β1u(xI)+β2u′ (xI)+β3u′′ (xI) = β1u+β2u′+β3u′′ (38)

It is noted that actually there exist only 1 or 2 terms in
both sides of equation (38), depending on the combina-
tion of the boundary conditions.

However, as discussed in Section 2, we know that the
MLS interpolation is hardly capable of approximating
the third derivative of function u. Our numerical ex-
periments based on LWF (33), cannot obtain any stable
and convergent results (using some special parameter-
combinations, one may happen to obtain some good re-
sults), using either weight function (20) or Heaviside
function as test function. Hence, the unsymmetric local
weak form (33) is not appropriate for the numerical im-
plementation either. However, the mixed MLPG method
based on this LWF (33) can still generate stable and con-
vergent results, as will be described in next section.

3.2 Symmetric local weak form

Integrating (31) by parts twice yields the following sym-
metric local weak form,

nx
[
u′′′v

]
Γs
−nx

[
u′′v′

]
Γs

+
∫

Ωs

u′′v′′dx+
∫

Ωs

(u−1)vdx = 0 (39)

This is a symmetric local weak form, and both the trial
and test function should be C1 continuious. Imposing the
boundary conditions (29) and (30), one obtains

nx
[
u′′′v

]
Γsu′′′

+nx
[
u′′′v

]
Γsu

+nx
[
u′′′v

]
Ls

−nx
[
u′′v′

]
Γsu′′

−nx
[
u′′v′

]
Γsu′

−nx
[
u′′v′

]
Ls

+
∫

Ωs

u′′v′′dx+
∫

Ωs

(u−1)vdx = 0 (40)

In order to simplify the above equation, one can select a
test function v such that it, and its derivative, vanish over
Ls, then equation (40) can be rewritten as

nx
[
u′′′v

]
Γsu

−nx
[
u′′v′

]
Γsu′

+
∫

Ωs

u′′v′′dx+
∫

Ωs

uvdx

=
∫

Ωs

vdx−nx
[
u′′′v

]
Γsu′′′

+nx
[
u′′v′

]
Γsu′′

(41)

By means of the MLS interpolation (5), the local sym-
metric weak form (41) can be discretized as

N

∑
I=1

nx

[
d3φI (x)

dx3 v

]
Γsu

ûI −
N

∑
I=1

nx

[
d2φI (x)

dx2 v′
]

Γsu′
ûI +

N

∑
I=1

∫
Ωs

[
φI (x)v+

d2φI (x)
dx2 v′′

]
dxûI

=
∫

Ωs

vdx−nx
[
u′′′v

]
Γsu′′′

+nx
[
u′′v′

]
Γsu′′

(42)

The collocation method is used to impose the boundary
conditions. For boundary node xI , one has

β1u(xI)+β2u′ (xI) = β1u+β2u′ (43)
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It is noted that actually there may exist 0 to 2 terms in
each sides of equation (43), depending on the combina-
tion of the boundary conditions.

To illustrate their effectiveness, the MLPG methods
based on the LWF (41) are used to solve equation (26)
with boundary conditions:

u = u′′ = 0 at x = 0,1 (44)

The exact solution is equation (22).

For the purpose of error estimation and convergence
studies, the following norm is used:

‖u‖=
(∫

Ω
u2dx

) 1
2

(45)

The relative errors for every order derivative are defined
as

ek =

∥∥∥∥(d(k)u
dxk

)num−
(

d(k)u
dxk

)exact
∥∥∥∥∥∥∥∥(d(k)u

dxk

)exact
∥∥∥∥

, k = 0,1,2,3 (46)

For the present problem of a beam on elastic founda-
tion, the normalized elastic energy stored in the system,
at equilibrium, may be written as

W =
1
2

∫ 1

0

(
u′′+u2)dx

The relative error for the energy is defined as

ep =

∣∣∣Wnum−W exact
∣∣∣∣∣Wexact∣∣ (47)

At first, we use the cubic basis, i.e. m=4. Both the
weight function in the MLS interpolation and the test
function are taken to be equation (20). 41 nodes are used
(h=0.025, with h being the distance between nodes). Fig.
6 shows the influence of the radius of the test domain on
the relative errors e0 and e1, where the radius of the trial
function domain is taken to be 4.5h. From this figure, it
can be found that the relative errors of the function u and
its first derivative are less than 1% when the trial func-
tion domain is big enough (> 2.5h). It is noticed that the
accuracy is not sensitive to the radius of the test domain

from 3-5h. Fig. 7 shows the influence of the radius of
the trial domain on the errors e0 and e1, where the radius
of the test domain is taken to be 3.5h. The results for
the function u and its first derivative are highly accurate.
The relative errors e0 and e1 are not sensitive to the radius
of the trial function domain from 3.5-5.5h, and less than
1%. For the linear (m=2) basis, the same trends can be
observed. However, for m=2, a larger radius of the trial
function domain should be chosen to obtain an accurate
and stable result. In fact, in MLS, to increase the radius
of the trial function domain is equivalent to increase m of
the basis function.

The convergence rate is investigated with three nodal
configurations: 11, 21, and 41 nodes. We also consider
the effects of the basis functions: linear (m=2) and cu-
bic (m=4) bases are used in this investigation. For cu-
bic (m=4) basis, the radius of the test domain is taken to
be 3.5h, and the radius of the trial domain is taken to be
4.5h. For linear (m=2) basis, the radius of the test domain
is taken to be 3.5h, and the radius of the trial domain is
taken to be 8h. The relative errors e0 and e1 and the con-
vergence rates R of the displacement and first derivative
are depicted in Fig. 8, for both m=4 and m=2. The con-
vergence rates R of the relative errors e2, e3 and ep for
the second, third derivatives and the energy, are plotted
in Fig. 9 only for m=4. It can be seen that the present
MLPG method has high rates of convergence for norms
e0, e1, e2, and ep, and gives very accurate results for the
unknown variable, its first and second derivatives, and the
energy. The results from the cubic (m=4) basis are more
accurate, and of higher convergent rate than those from
the linear (m=2) basis. However, the results for the third
derivative are not very accurate, and the convergence rate
for the relative error e3 is not high.

3.3 Unsymmetric local weak form 2

Integrating (31) by parts three times yields the following
local unsymmetric weak form,

nx
[
u′′′v

]
Γs
−nx

[
u′′v′

]
Γs

+nx
[
u′v′′

]
Γs

−
∫

Ωs

u′v′′′dx+
∫

Ωs

(u−1)vdx = 0 (48)

This is an unsymmetric weak form, and the trial function
can be C0 continuious. Imposing the boundary condi-
tions (29) and (30), one obtains
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Figure 6 : The influence of the test domain size (41
nodes).
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Figure 7 : The influence of the trial domain size (41
nodes).

nx
[
u′′′v

]
Γsu′′′

+nx
[
u′′′v

]
Γsu

+nx
[
u′′′v

]
Ls

−nx
[
u′′v′

]
Γsu′′

−nx
[
u′′v′

]
Γsu′

−nx
[
u′′v′

]
Ls

+nx
[
u′v′′

]
Γsu′

+nx
[
u′v′′

]
Γsu′′

+nx
[
u′v′′

]
Ls

−
∫

Ωs

u′v′′′dx+
∫

Ωs

(u−1)vdx = 0 (49)

One can select a test function v such that itself, and its
first and second derivatives vanish over Ls. Such a test
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Figure 8 : Convergence rate in relative errors e0 and e1.
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Figure 9 : Convergence rate in relative errors e2, e3, and
ep.

function is given in (20) and (21). Then equation (49)
can be simplified as

nx
[
u′′′v

]
Γsu

−nx
[
u′′v′

]
Γsu′

+nx
[
u′v′′

]
Γsu′′

+
∫

Ωs

uvdx−
∫

Ωs

u′v′′′dx

=
∫

Ωs

vdx−nx
[
u′′′v

]
Γsu′′′

+nx
[
u′′v′

]
Γsu′′

−nx
[
u′v′′

]
Γsu′

(50)

With equation (5), one may discretize the local symmet-
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ric weak form (50) as

N

∑
I=1

nx

[
d3φI (x)

dx3 v

]
Γsu

ûI −
N

∑
I=1

nx

[
d2φI (x)

dx2 v′
]

Γsu′
ûI +

N

∑
I=1

nx

[
dφI (x)

dx
v′′
]

Γsu′′
ûI

+
N

∑
I=1

∫
Ωs

[
φI (x)v− dφI (x)

dx
v′′′
]
dxûI

=
∫

Ωs

vdx−nx
[
u′′′v

]
Γsu′′′

+nx
[
u′′v′

]
Γsu′′

−nx
[
u′v′′

]
Γsu′

(51)

The collocation method is used to impose the only
boundary condition, which does not appear in the left
side of equation (51). For boundary node xI , one has

β1u(xI) = β1u (52)

In the numerical example, we also use the cubic basis,
i.e. m=4. The weight function in MLS is taken to be
as in equation (20), while the test function in LWF (49)
is chosen to be as in equation (21). 41 nodes are used
(h=0.025) to consider the influences of the radius of both
test and trial domains. Fig. 10 shows the influence of the
radius of the test domain on the errors e0 and e1, where
the radius of the trial function domain is taken to be 4.5h.
From this figure, it can be found that the accuracy of the
function, u as well as its first derivative, is high, when the
trial function domain is big enough (> 2.5h). Similarly,
it is noticed that the accuracy is not sensitive to the radius
of the test domain from 3-5h. Fig. 11 shows the influence
of the radius of the trial domain on the errors e0 and e1,
where the radius of the test domain is taken to be 3.5h.
The results for the function u, as well as its first deriva-
tive, are of high accuracy. The relative errors e0 and e1

are less than 1%, and are not sensitive to the radius of
the trial function domain as the radius of the trial domain
is greater than 4h. For the linear (m=2) basis, the same
trends can be observed. Again, for m=2, a larger radius
of the trial function domain should be chosen to obtain
an accurate and stable result.

Similarly, the convergence rate is investigated with three
nodal configurations: 11, 21, and 41 nodes. The ef-
fects of the basis functions: linear (m=2) and cubic (m=4)
bases are investigated. For cubic (m=4) basis, the radius
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Figure 10 : The influence of the test domain size (41
nodes).

of the test domain is taken to be 3.5h, and the radius of
the trial domain is taken to be 4.5h. For linear (m=2) ba-
sis, the radius of the test domain is taken to be 3h, and
the radius of the trial domain is taken to be 6.5h. The rel-
ative errors e0 and e1 and the convergence rates R of the
displacement and first derivative are depicted in Fig. 12,
for both m=4 and m=2. The convergence rates R of the
relative errors e2, e3 and ep for the second, third deriva-
tives and the energy, are plotted in Fig. 13 only for m=4.
It can be seen that the present MLPG method has stable
convergence rates for norms e0, e1, e2, and ep, and gives
reasonably accurate results for the unknown variable, its
first and second derivatives, and the energy. The results
from the cubic (m=4) basis are more accurate, and are of
a higher convergent rate than those from the linear (m=2)
basis. However, the results for the third derivative are not
very accurate, and the convergence rate for the relative
error e3 is not high.

3.4 Unsymmetric local weak form 3

Integrating (31) by parts four times yields the following
unsymmetric local weak form,

nx
[
u′′′v

]
Γs
−nx

[
u′′v′

]
Γs

+nx
[
u′v′′

]
Γs

−nx
[
uv′′′

]
Γs

+
∫

Ωs

u
d4v
dx4 dx+

∫
Ωs

(u−1)vdx = 0 (53)
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Figure 11 : The influence of the trial domain size (41
nodes).

0.001

0.01

0.1

1

0.025 0.05 0.075 0.1

Nodal distance (h)

R
e
la

ti
v
e
 e

rr
o

rs

e0 (m=4) R=1.43

e1 (m=4) R=1.44

e0 (m=2)

e1 (m=2)

Figure 12 : Convergence rate in relative errors e0 and e1.

In this weak form, no derivatives of the trial function ap-
pear in the domain integration. Moreover, all the bound-
ary conditions become “natural” boundary conditions.
Then, there is no difficulty in the implementation of the
boundary conditions.

Imposing the boundary conditions (29) and (30), one ob-
tains
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Figure 13 : Convergence rate in relative errors e2, e3, and
ep.

nx
[
u′′′v

]
Γsu′′′

+nx
[
u′′′v

]
Γsu

+nx
[
u′′′v

]
Ls

−nx
[
u′′v′

]
Γsu′′

−nx
[
u′′v′

]
Γsu′

−nx
[
u′′v′

]
Ls

+nx
[
u′v′′

]
Γsu′

+nx
[
u′v′′

]
Γsu′′

+nx
[
u′v′′

]
Ls

−nx
[
uv′′′

]
Γsu

−nx
[
uv′′′

]
Γsu′′′

−nx
[
uv′′′

]
Ls

+
∫

Ωs

u
d4v
dx4 dx+

∫
Ωs

(u−1)vdx = 0 (54)

In order to simplify the above equation, we can select a
test function v, such that itself and its first, second and
third derivatives vanish over Ls. Such a test function is
given in (21). Then equation (54) can be rewritten as

nx
[
u′′′v

]
Γsu

−nx
[
u′′v′

]
Γsu′

+nx
[
u′v′′

]
Γsu′′

−nx
[
uv′′′

]
Γsu′′′

+
∫

Ωs

u
d4v
dx4 dx+

∫
Ωs

uvdx

=
∫

Ωs

vdx−nx
[
u′′′v

]
Γsu′′′

+nx
[
u′′v′

]
Γsu′′

−nx
[
u′v′′

]
Γsu′

+nx
[
uv′′′

]
Γsu

(55)

With equation (5), one may discretize the local unsym-
metric weak form (55) as
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N

∑
I=1

nx

[
d3φI (x)

dx3 v

]
Γsu

ûI −
N

∑
I=1

nx

[
d2φI (x)

dx2 v′
]

Γsu′
ûI +

N

∑
I=1

nx

[
dφI (x)

dx
v′′
]

Γsu′′
ûI −

N

∑
I=1

nx
[
φI (x)v′′′

]
Γsu′′′

ûI

+
N

∑
I=1

∫
Ωs

φI (x)
[
v+

d4v
dx4

]
dxûI

=
∫

Ωs

vdx−nx
[
u′′′v

]
Γsu′′′

+nx
[
u′′v′

]
Γsu′′

−nx
[
u′v′′

]
Γsu′

+nx
[
uv′′′

]
Γsu

(56)

To illustrate the effectiveness of the MLPG method base
on the local weak form (54). The same problem as that
in the Subsection 3.2 is solved here. We also start with
the cubic basis, i.e. m=4, in the MLS interpolation. The
weight function in MLS is taken to be equation (20),
while the test function in LWF (55) is chosen to be equa-
tion (21), because of the C3 continuity-requirement for
the test function. 41 nodes are used (h=0.025). Fig. 14
shows the influence of the radius of the test domain on
the errors e0 and e1, where the radius of the trial func-
tion domain is taken to be 4.5h. From this figure, it can
be found that the accuracy of the function u, and its first
derivative, is very high when the trial function domain
is big enough (> 2.5h). Similarly, it is noticed that the
accuracy is not sensitive to the radius of the test domain
from 3-6h, the relative errors e0 and e1 are less than 1%.
Fig. 15 shows the influence of the radius of the trial do-
main on the errors e0 and e1, where the radius of the test
domain is taken to be 4h. The results for the function u
and its first derivative are of high accuracy. The relative
errors e0 and e1 are not sensitive to the radius of the trial
function domain. For the linear (m=2) basis, the same
trends can be observed. Again, for m=2, a larger radius
of the trial function domain should be chosen to obtain an
accurate and stable result. It can be found that the results
in this subsection are more accurate that those in the pre-
vious subsections, since no derivative of the trial function
appears in the domain integration in the local weak form.

Similarly, the convergence rate is investigated with three
nodal configurations: 11, 21, and 41 nodes. We also con-
sider the effects of the basis functions, and linear (m=2)
and cubic (m=4) bases are used in this investigation. For
cubic (m=4) basis, the radius of the test domain is taken
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Figure 14 : The influence of the test domain size (41
nodes).

to be 4h, and the radius of the trial domain is taken to be
5h. For linear (m=2) basis, the radius of the test domain
is taken to be 4h, and the radius of the trial domain is
taken to be 6.5h. The results clearly illustrate stable con-
vergence rates for both e0 and e1 for the present MLPG
methods. Obviously, the results from the cubic (m=4)
basis are more accurate than those from the linear (m=2)
basis. The relative errors e0 and e1 and the convergence
rates R of the displacement and first derivative are de-
picted in Fig. 16, for both m=4 and m=2. The conver-
gence rates R of the relative errors e2, e3 and ep for the
second, third derivatives and the energy, are plotted in
Fig. 17 only for m=4. It can be seen that the present
MLPG method has high convergence rates for norms e0,
e1, e2, and ep, and gives very accurate results for the un-
known variable, as well as its first and second derivatives,
and the energy. The results from the cubic (m=4) ba-
sis are more accurate and of higher convergent rate than
those from the linear (m=2) basis. However, the results
for the third derivative are not very accurate, and the con-
vergent rate for the relative error e3 is low.

4 The First Kind of Mixed MLPG Methods

For a 4th order ODE, there are two approaches to develop
the MLPG mixed methods. In this section, the first kind
of mixed MLPG methods will be developed to solve the
4th order ODE. In the first kind of mixed MLPG methods,
both the displacement as well as its second derivative are
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Figure 15 : The influence of the trial domain size (41
nodes).
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Figure 16 : Convergence rate in relative errors e0 and e1.

interpolated independently through meshless interpola-
tion schemes, in order to eliminate the direct differentia-
tion of the trial function to obtain its second and higher
order derivatives of the shape function in the local weak
forms.

First, we introduce a function z as

u′′ = z (57)

Then, equation (26) becomes

z′′+u−1 = 0 (58)
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Figure 17 : Convergence rate in relative errors e2, e3, and
ep.

With the use of the MLS approximation, the function z
can be independently interpolated as

zh (x) =
N

∑
I=1

φI (x) ẑI, zh (xI) ≡ zI �= ẑI , x ∈ Ωx (59)

4.1 Local weak form 1

Analogously, a local weak form can be derived as

nx
[
z′v
]

Γs
−
∫

Ωs

z′v′dx+
∫

Ωs

(u−1)vdx = 0 (60)

This weak form corresponds to the local unsymmetric
weak form (32), but, now there exist only the first deriva-
tives of z and v in the local weak form, and the require-
ment of the continuity for the trial function z is only C0.
As discussed in Section 2, the direct differentiation of u is
not efficient in calculating its higher order derivatives ev-
erywhere. Thus, compared to the primal MLPG method
based on LWF (32), the present mixed MLPG method
should be more efficient.

In order to simplify the above equation, a test function v
can be selected such that it vanishes over Ls, then equa-
tion (60) can be rewritten as

nx
[
z′v
]

Γsu
+
∫

Ωs

uvdx−
∫

Ωs

z′v′dx

=
∫

Ωs

vdx−nx
[
z′v
]

Γsu′′′
(61)
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With the interpolations (5) and (59), one may discretize
the local weak form (61) as

N

∑
I=1

nx

[
dφI (x)

dx
v

]
Γsu

ẑI +

N

∑
I=1

∫
Ωs

[
φI (x)vûI − dφI (x)

dx
v′ẑI

]
dx

=
∫

Ωs

vdx−nx
[
z′v
]

Γsu′′′
(62)

One may choose the Heaviside function as the test func-
tion, and obtains

nx
[
z′v
]

Γsu
+nx

[
z′v
]

Ls
+
∫

Ωs

uvdx

=
∫

Ωs

vdx−nx
[
z′v
]

Γsu′′′
(63)

Equation (63) can be discretized as

N

∑
I=1

nx

[
dφI (x)

dx
v

]
Γsu

ẑI+
N

∑
I=1

nx

[
dφI (x)

dx
v

]
Ls

ẑI

+
N

∑
I=1

∫
Ωs

φI (x)vdxûI =
∫

Ωs

vdx−nx
[
z′v
]

Γsu′′′
(64)

In equation (62) or (64), there are 2N independent un-
knowns (N second derivative variables ẑI and N displace-
ment variables ûI), but the number of the equation is only
N. However, one can reduce the number of the variables
by relating z to u′′ via the collocation methods, without
any changes to equation (62) or (64). The collocation
method is employed to enforce equation (57) only at each
node xI , instead of the entire solution domain. Thus, the
function z at node xI is expressed in terms of the function
u at node xI , as

z (xI) = u′′ (xI) (65)

With the interpolations (5) and (59), the two sets of nodal
variables can be transformed through a linear algebraic
matrix,

ẑI = HIJûJ (66)

where the transformation matrix H is banded. Substi-
tuting equation (66) into equation (62) or (64), one can
obtain a linear algebraic equation system of ûI.

The collocation method is used to impose the boundary
conditions. For boundary node xI , one has

β1u(xI)+β2u′ (xI)+β3z (xI) = β1u+β2u′ +β3z (67)

It is noted that actually there exist only 1 or 2 terms on
both the sides of equation (67), depending on the combi-
nation of the boundary conditions.

To demonstrate the effectiveness of this method, the same
numerical example as in Section 3 is considered in this
section.

In this subsection, only the linear basis, i.e. m=2, is em-
ployed in the MLS interpolation, and the weight function
in MLS is taken to be equation (20).

4.1.1 The test function is taken to be the weight function

At first, we take equation (20) as the test function, i.e.
use the discretized equation (62). 41 nodes are used
(h=0.025). Fig. 18 shows the influence of the radius of
the test domain on the errors e0 and e1, where the ra-
dius of the trial function domain is taken to be 5.1h. It
is noticed that the relative errors e0 and e1 (around 2%)
are almost independent of the radius of the test domain
from 1-3.5h. Fig. 19 shows the influence of the radius
of the trial domain on the errors e0 and e1, where the ra-
dius of the test domain is taken to be 2.5h. The results
for the function u and its first derivative are acceptable
(less than 10%). The relative errors e0 and e1 are not
very sensitive to the radius of the trial function domain
from 2.5-5.5h. The convergence rate is investigated with
three nodal configurations: 11, 21, and 41 nodes for lin-
ear (m=2) basis. The radius of the test domain is taken
to be 2.5h, and the radius of the trial domain is taken
to be 2.5h. The results clearly demonstrate stable con-
vergence rates for both e0 and e1 for the present mixed
MLPG methods. The relative errors e0 and e1 and the
convergence rates R of the displacement and first deriva-
tive are depicted in Fig. 20. The convergence rates R
of the relative errors e2, e3 and ep for the second, third
derivatives and the energy, are plotted in Fig. 21. It can
be seen that the present mixed MLPG method has stable
convergence rate for norms e0, e1, e2, and ep, and gives
reasonably accurate results for the unknown variable, its
first and second derivatives, and the energy. However,
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Figure 18 : The influence of the test domain size (41
nodes).
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Figure 19 : The influence of the trial domain size (41
nodes).

the results for the third derivative are not accurate, and
the convergence rate for the relative error e3 is not stable.

These figures show that, based on the same LWF (32),
the mixed MLPG method can obtain stable results, al-
though the accuracy of the results is not very high, while
the primal MLPG method cannot work.

4.1.2 The test function is taken to be Heaviside function

Now, we choose Heaviside function as the test function,
i.e. use the discretized equation (64). 41 nodes are used
(h=0.025). Fig. 22 shows the influence of the radius of
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Figure 20 : Convergence rate in relative errors e0 and e1.
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Figure 21 : Convergence rate in relative errors e2, e3, and
ep.

the test domain on the errors e0 and e1, where the radius
of the trial function domain is taken to be 5.1h. It is no-
ticed that the relative errors e0 and e1 (around 1%) are
almost independent of the radius of the test domain from
0.5-2.5h. Fig. 23 shows the influence of the radius of the
trial domain on the errors e0 and e1, where the radius of
the test domain is taken to be 2.5h. The results for the
function u and its first derivative are acceptable. The rel-
ative errors e0 and e1 are not very sensitive to the radius
of the trial function domain from 2.5-5.5h. The conver-
gence rate is investigated with three nodal configurations:
11, 21, and 41 nodes for linear (m=2) basis. The radius of
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Figure 22 : The influence of the test domain size (41
nodes).

the trial domain is taken to be 5.1h, and the radius of the
test domain is taken to be 2.5h. The relative errors e0 and
e1 and the convergence rates R of the displacement and
first derivative are depicted in Fig. 24. The convergence
rates R of the relative errors e2, e3 and ep for the sec-
ond, third derivatives and the energy, are plotted in Fig.
25. It can be seen that the present mixed MLPG method
has stable convergence rates for norms e0, e1, e2, and ep,
and gives reasonably accurate results for the unknown
variable, its first and second derivatives, and the energy.
However, the results for the third derivative are not accu-
rate, and the convergence rate for the relative error e3 is
not stable. The mixed MLPG method with the Heaviside
function being the test function is more accurate than the
mixed MLPG method with equation (20) being the test
function.

4.2 Local weak form 2

In LWF (60), there still exists the first derivative of z in
the domain integration, which can be eliminated by inte-
grating (60) by part once. Thus, another local weak form
can be obtained as

nx
[
z′v
]

Γs
−nx

[
zv′
]

Γs
+
∫

Ωs

zv′′dx+
∫

Ωs

(u−1)vdx = 0

(68)

which corresponds to the local symmetric weak form
(39), but no derivatives of either z or u appear in the do-
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Figure 23 : The influence of the trial domain size (41
nodes).
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Figure 24 : Convergence rate in relative errors e0 and e1.

main integration. In LWF (39), there the second deriva-
tive of u occurs in the domain integration.

In order to simplify the above equation, we can select
a test function v such that, itself and its first derivative,
vanish over Ls, then equation (68) can be rewritten as

nx
[
z′v
]

Γsu
−nx

[
zv′
]

Γsu′
+
∫

Ωs

uvdx+
∫

Ωs

zv′′dx

=
∫

Ωs

vdx−nx
[
z′v
]

Γsu′′′
+nx

[
zv′
]

Γsu′′
(69)

With equations (5) and (59), one may discretize the local
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Figure 25 : Convergence rate in relative errors e2, e3, and
ep.
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Figure 26 : The influence of the test domain size (41
nodes).

weak form (69) as

N

∑
I=1

nx

[
dφI (x)

dx
v

]
Γsu

ẑI −
N

∑
I=1

nx
[
φI (x)v′

]
Γsu′

ẑI

+
N

∑
I=1

∫
Ωs

[
φI (x)vûI −φI (x)v′′ ẑI

]
dx

=
∫

Ωs

vdx−nx
[
z′v
]

Γsu′′′
+nx

[
zv′
]

Γsu′′
(70)

Substituting equation (66) into equation (70), one can ob-

tain a linear algebraic equation system of ûI .

The collocation method is employed to impose the
boundary conditions, as in equation (43).

To illustrate the effectiveness of this method, the same
numerical example as in the previous section is consid-
ered here again. At first, the cubic basis (m=4) is used in
the MLS interpolation. Both the weight function in MLS
and the test function are taken to be equation (20). 41
nodes are used (h=0.025). Fig. 26 shows the influence of
the radius of the test domain on the relative errors e0 and
e1, where the radius of the trial function domain is taken
to be 4.5h. From this figure, it can be found that the accu-
racy of the function u and its first derivative is high when
the test function domain is big enough (> 2.5h). It is no-
ticed that the relative errors e0 and e1 are not sensitive to
the radius of the test domain from 3-5h (less than 1%).
Fig. 27 shows the influence of the radius of the trial do-
main on the errors e0 and e1, where the radius of the test
domain is taken to be 3.5h. The results for the function
u and its first derivative are accurate. The relative errors
e0 and e1 are not sensitive to the radius of the trial func-
tion domain from 3.5-7h. For the linear (m=2) basis, the
same trends can be observed. However, for m=2, a larger
radius of the trial function domain should be chosen to
obtain an accurate and stable result.

The convergence rate is investigated with three nodal
configurations: 11, 21, and 41 nodes. We also consider
the effects of the basis functions: linear (m=2) and cu-
bic (m=4) bases are used in this investigation. For cu-
bic (m=4) basis, the radius of the test domain is taken
to be 4h, and the radius of the trial domain is taken to
be 4.5h. For linear (m=2) basis, the radius of the test
domain is taken to be 3.5h, and the radius of the trial
domain is taken to be 8h. The relative errors e0 and e1

and the convergence rates R of the displacement and first
derivative are depicted in Fig. 28, for both m=4 and m=2.
The convergence rates R of the relative errors e2, e3 and
ep for the second, third derivatives and the energy, are
plotted in Fig. 29 only for m=4. It can be seen that the
present mixed MLPG method has high rates of conver-
gence for norms e0, e1, e2, and ep, and gives reason-
ably accurate results for the unknown variable, its first
and second derivatives, and the energy. The results from
the cubic (m=4) basis are more accurate and of higher
convergent rate than those from the linear (m=2) basis.
However, the results for the third derivative are not very
accurate, while the convergence rate for the relative error
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Figure 27 : The influence of the trial domain size (41
nodes).
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Figure 28 : Convergence rate in relative errors e0 and e1.

e3 is high.

Compared to the corresponding primal MLPG method
based on the local weak form (39), this mixed MLPG
method requires less Gaussian points, and is more stable
and accurate. The mixed MLPG method is cheaper and
faster.

4.3 Local weak form 3

By means of the idea of the mixed MLPG method, the
local weak form (53) can be rewritten as,
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Figure 29 : Convergence rate in relative errors e2, e3, and
ep.

nx
[
z′v
]

Γs
−nx

[
zv′
]

Γs
+nx

[
u′v′′

]
Γs

−nx
[
uv′′′

]
Γs

+
∫

Ωs

u
d4v
dx4 dx+

∫
Ωs

(u−1)vdx = 0 (71)

Compared to the LWF (53), the LWF (71) does not have
higher derivatives in the local boundary.

Imposing the boundary conditions (29) and (30), one ob-
tains

nx
[
z′v
]

Γsu′′′
+nx

[
z′v
]

Γsu
+nx

[
z′v
]

Ls

−nx
[
zv′
]

Γsu′′
−nx

[
zv′
]

Γsu′
−nx

[
zv′
]

Ls

+nx
[
u′v′′

]
Γsu′

+nx
[
u′v′′

]
Γsu′′

+nx
[
u′v′′

]
Ls

−nx
[
uv′′′

]
Γsu

−nx
[
uv′′′

]
Γsu′′′

−nx
[
uv′′′

]
Ls

+
∫

Ωs

u
d4v
dx4 dx+

∫
Ωs

(u−1)vdx = 0 (72)

In order to simplify the above equation, we can select a
test function v such that, itself and its first, second and
third derivatives vanish over Ls. Such a test function is
given in (21). Then equation (72) can be rewritten as
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nx
[
z′v
]

Γsu
−nx

[
zv′
]

Γsu′
+nx

[
u′v′′

]
Γsu′′

−nx
[
uv′′′

]
Γsu′′′

+
∫

Ωs

u
d4v
dx4

dx+
∫

Ωs

uvdx

=
∫

Ωs

vdx−nx
[
z′v
]

Γsu′′′
+nx

[
zv′
]

Γsu′′

−nx
[
u′v′′

]
Γsu′

+nx
[
uv′′′

]
Γsu

(73)

With the interpolations (5) and (59), one may discretize
the local symmetric weak form (73) as

N

∑
I=1

nx

[
dφI (x)

dx
v

]
Γsu

ẑI −
N

∑
I=1

nx
[
φI (x)v′

]
Γsu′

ẑI +

N

∑
I=1

nx

[
dφI (x)

dx
v′′
]

Γsu′′
ûI −

N

∑
I=1

nx
[
φI (x)v′′′

]
Γsu′′′

ûI

+
N

∑
I=1

∫
Ωs

φI (x)
[
v+

d4v
dx4

]
dxûI

=
∫

Ωs

vdx−nx
[
z′v
]

Γsu′′′
+nx

[
zv′
]

Γsu′′

−nx
[
u′v′′

]
Γsu′

+nx
[
uv′′′

]
Γsu

(74)

Substituting equation (66) into equation (74), one can ob-
tain a linear algebraic equation system of ûI.

The numerical results still start with the cubic basis, i.e.
m=4, in the MLS approximation. The weight function
in MLS is taken to be equation (20), while the test func-
tion in LWF (73) is chosen to be equation (21). 41 nodes
are used (h=0.025). Fig. 30 shows the influence of the
radius of the test domain on the errors e0 and e1, where
the radius of the trial function domain is taken to be 4.5h.
From this figure, it can be found that the accuracy of the
function u and its first derivative is very high when the
trial function domain is big enough (> 2.5h). Similarly,
it is noticed that the accuracy is not sensitive to the ra-
dius of the test domain from 3-6h. Fig. 31 shows the
influence of the radius of the trial domain on the errors
e0 and e1, where the radius of the test domain is taken to
be 4h. The results for the function u, as well as its first
derivative, are of high accuracy. The relative errors e0

and e1 are less than 1% for the radius of the trial func-
tion domain between 3.5-7h. For the linear (m=2) basis,
the same trends can be observed. However, in this mixed

MLPG method, for m=2, a larger radius of the trial func-
tion domain is needed, in order to obtain an accurate and
stable result.

Similarly, the convergence rate is investigated with three
nodal configurations: 11, 21, and 41 nodes. We also con-
sider the effects of the basis functions: linear (m=2) and
cubic (m=4) bases are used in this investigation. For cu-
bic (m=4) basis, the radius of the test domain is taken
to be 4h, and the radius of the trial domain is taken to
be 4.5h. For linear (m=2) basis, the radius of the test
domain is taken to be 4h, and the radius of the trial do-
main is taken to be 6.5h. The relative errors e0 and e1

and the convergence rates R of the displacement and first
derivative are depicted in Fig. 32, for both m=4 and m=2.
The convergence rates R of the relative errors e2, e3 and
ep for the second, third derivatives and the energy, are
plotted in Fig. 33 only for m=4. It can be seen that the
present MLPG method has high rates of convergence for
norms e0, e1, e2, and ep, and gives very accurate results
for the unknown variable, its first and second derivatives,
and the energy. This mixed MLPG method can obtain the
almost the same accurate results for both m=2 and m=4.
However, the results for the third derivative are not very
accurate, and the convergence rate for the relative error
e3 is low.

Compared to the corresponding primal MLPG method
based on the local weak form (53), this mixed MLPG
method requires less Gaussian points, and is more sta-
ble and accurate, especially for m=2. The mixed MLPG
method is cheaper and faster.

5 The Second Kind of Mixed MLPG Methods

In the first kind of mixed MLPG methods, there still ex-
ists the first derivative of z or u in the local weak forms.
To avoid fully the appearance of any derivatives in the
local weak forms, in this section, the second kind of the
mixed MLPG methods are introduced. In the second
kind of mixed MLPG methods, the displacement, its first
derivative, second derivative, as well as the third deriva-
tive are all interpolated independently through meshless
interpolation schemes. The second kind of mixed MLPG
method is developed by introducing the following3 func-
tions

u′ = g
g′ = z
z′ = q

(75)
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Figure 30 : The influence of the test domain size (41
nodes).
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Figure 31 : The influence of the trial domain size (41
nodes).

Then, equation (26) becomes

q′+u−1 = 0 (76)

With the use of the MLS approximation, the functions g,
z, and q can be independently interpolated as

gh (x) =
N

∑
I=1

φI (x) ĝI , gh (xI) ≡ gI �= ĝI, x ∈ Ωx (77)

zh (x) =
N

∑
I=1

φI (x) ẑI, zh (xI) ≡ zI �= ẑI , x ∈ Ωx (78)
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Figure 32 : Convergence rate in relative errors e0 and e1.
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Figure 33 : Convergence rate in relative errors e2, e3, and
ep.

qh (x) =
N

∑
I=1

φI (x) q̂I, qh (xI) ≡ qI �= q̂I , x ∈ Ωx (79)

5.1 The local weak form 1

Analogously, the following local weak forms can be de-
rived, as

nx [qv]Γs
−
∫

Ωs

qv′dx+
∫

Ωs

(u−1)vdx = 0 (80)

This weak form corresponds to the unsymmetric weak
form (32) or (60). However, no derivative of the trial
functions appear in this local weak form.
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In order to simplify the above equation, one can select a
test function v such that it vanishes over Ls; then equation
(80) can be rewritten as

nx [qv]Γsu
+
∫

Ωs

uvdx−
∫

Ωs

qv′dx =
∫

Ωs

vdx−nx [qv]Γsu′′′

(81)

With equations (5) and (79), one may discretize the local
weak form (81) as

N

∑
I=1

nx
[
φI (x)v

]
Γsu

q̂I +
N

∑
I=1

∫
Ωs

φI (x)
[
vûI −v′q̂I

]
dx

=
∫

Ωs

vdx−nx [qv]Γsu′′′
(82)

In equation (82), there are 2N independent unknowns (N
second derivative variables q̂I and N displacement vari-
ables ûI), but the number of the equation is only N. How-
ever, one can reduce the number of the variables by trans-
forming the variables g, z, and q back to the displace-
ment variable via the collocation methods, without any
changes to equation (82). The collocation method is em-
ployed to enforce equation (75) only at each node xI , in-
stead of the entire solution domain. Thus, the functions
g, z, and q at node xI are expressed in terms of the deriva-
tives of the related function at node xI , as

g(xI) = u′ (xI)
z (xI) = g′ (xI)
q(xI) = z′ (xI)

(83)

With the interpolations (5) and (77)-(79), the two related
sets of nodal variables can be transformed through a lin-
ear algebraic matrix,

ĝI = GIJûJ

ẑI = GIJĝI

q̂I = GIJẑI

(84)

where the transformation matrix G is banded. Through
(84), the nodal variables of the function g, z, and q can
be related to the nodal variable of function u, as

ĝI = GIJûJ

ẑI = RIJûJ

q̂I = TIJûJ

(85)

where R = G2, and T = G3.

Substituting equation (85) into equation (82), one can ob-
tain a linear algebraic equation system of ûI .

However, our numerical experiments based on LWF (80),
cannot obtain any stable and convergent results (using
some special parameter-combinations, one may happen
to obtain some good results), using either weight function
(20) or Heaviside function as test function. Hence, this
local weak form is not appropriate for the numerical im-
plementation either. This may be since the errors intro-
duced by the collocation method are enlarged by T = G3.

5.2 The local weak form 2

By using the auxiliary functions (75), the local weak
form (39) can be rewritten as

nx [qv]Γs
−nx

[
zv′
]

Γs
+
∫

Ωs

zv′′dx+
∫

Ωs

(u−1)vdx = 0

(86)

Compared to the local symmetric weak form (39), the
LWF (86) has no derivative of the trial function in either
domain integration or local boundary integration.

In order to simplify the above equation, we can select
a test function v such that, itself and its first derivative,
vanishes over Ls. then equation (86) can be rewritten as

nx [qv]Γsu
−nx

[
zv′
]

Γsu′
+
∫

Ωs

uvdx+
∫

Ωs

zv′′dx

=
∫

Ωs

vdx−nx [qv]Γsu′′′
+nx

[
zv′
]

Γsu′′
(87)

With the interpolations (5) and (78), one may discretize
the local weak form (87) as

N

∑
I=1

nx
[
φI (x)v

]
Γsu

q̂I −
N

∑
I=1

nx
[
φI (x)v′

]
Γsu′

ẑI

+
N

∑
I=1

∫
Ωs

[
φI (x)vûI −φI (x)v′′ ẑI

]
dx

=
∫

Ωs

vdx−nx [qv]Γsu′′′
+nx

[
zv′
]

Γsu′′
(88)

Substituting equation (85) into equation (88), one can ob-
tain a linear algebraic equation system of ûI .
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The collocation method is employed to impose the
boundary conditions, as in equation (43).

To illustrate the effectiveness of this method, we consider
the same numerical example as in previous section again.
At first, we use the cubic basis, i.e. m=4 in the MLS inter-
polation. Both the weight function in MLS, and the test
function, are taken to be as in equation (20). 41 nodes
are used (h=0.025). Fig. 34 shows the influence of the
radius of the test domain on the errors e0 and e1, where
the radius of the trial function domain is taken to be 4.5h.
From this figure, it can be found that the accuracies of the
function u and its first derivative are very high, when the
test function domain is big enough (> h). The relative
errors e0 and e1 are less than 0.01%. It is noticed that the
accuracy is almost independent of the radius of the test
domain from 1.5-5h. Fig. 35 shows the influence of the
radius of the trial domain on the errors e0 and e1, where
the radius of the test domain is taken to be 3.5h. The re-
sults for the function u and its first derivative are highly
accurate. The relative errors e0 and e1 are not sensitive to
the radius of the trial function domain from 3.5-7h. For
the linear (m=2) basis, the same trends can be observed.
In this method, for m=2, the requirement of a larger ra-
dius of the trial function domain is not needed.

The convergence rate is investigated with three nodal
configurations: 11, 21, and 41 nodes. We also consider
the effects of the basis functions: linear (m=2) and cu-
bic (m=4) bases are used in this investigation. For cubic
(m=4) basis, the radius of the test domain is taken to be
4h, and the radius of the trial domain is taken to be 5h.
For linear (m=2) basis, the radius of the test domain is
taken to be 3.5h, and the radius of the trial domain is
taken to be 4.5h. The relative errors e0 and e1 and the
convergence rates R of the displacement and first deriva-
tive are depicted in Fig. 36, for both m=4 and m=2. The
convergence rates R of the relative errors e2, e3 and ep

for the second, third derivatives and the energy, are plot-
ted in Fig. 37 only for m=4. It can be seen that the present
mixed MLPG method has very high rates of convergence
for norms e0, e1, e2, and ep, and gives very accurate re-
sults for the unknown variable, its first and second deriva-
tives, and the energy. The results from the cubic (m=4)
basis are more accurate, and are of higher convergent rate
than those from the linear (m=2) basis. However, the re-
sults for the third derivative are not very accurate, while
the convergence rate for the relative error e3 is very high.

Compared to the corresponding primal MLPG method

based on the local weak form (39), this mixed MLPG
method requires less Gaussian points, is more stable,
and the results is of two-orders higher accuracy. This
mixed MLPG method is also more accurate than the cor-
responding first kind of mixed MLPG method.

0.00001

0.0001

0.001

0.01

1.5 2 2.5 3 3.5 4 4.5 5

Normalized radius of the test domain (r/h)

R
e

la
ti

v
e

 e
rr

o
rs

e0

e1

Figure 34 : The influence of the test domain size (41
nodes).
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Figure 35 : The influence of the trial domain size (41
nodes).

5.3 The local weak form 3

By using the auxiliary functions (75), the local weak
form (48) can be rewritten as
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Figure 36 : Convergence rate in relative errors e0 and e1.
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Figure 37 : Convergence rate in relative errors e2, e3, and
ep.

nx [qv]Γs
−nx

[
zv′
]

Γs
+nx

[
gv′′
]

Γs

−
∫

Ωs

gv′′′dx+
∫

Ωs

(u−1)vdx = 0 (89)

Compared to the local symmetric weak form (48), the
LWF (89) has no derivatives of the trial function in either
domain integration or local boundary integration.

Imposing the boundary conditions (29) and (30), one ob-
tains

nx [qv]Γsu′′′
+nx [qv]Γsu

+nx [qv]Ls

−nx
[
zv′
]

Γsu′′
−nx

[
zv′
]

Γsu′
−nx

[
zv′
]

Ls

+nx
[
gv′′
]

Γsu′
+nx

[
gv′′
]

Γsu′′
+nx

[
gv′′
]

Ls

−
∫

Ωs

gv′′′dx+
∫

Ωs

(u−1)vdx = 0 (90)

In order to simplify the above equation, one can select
a test function v such that, itself and its first and second
derivatives, vanish over Ls. Such test functions are given
in (20) and (21). Then equation (90) can be rewritten as

nx [qv]Γsu
−nx

[
zv′
]

Γsu′
+nx

[
gv′′
]

Γsu′′

+
∫

Ωs

uvdx−
∫

Ωs

gv′′′dx

=
∫

Ωs

vdx−nx [qv]Γsu′′′
+nx

[
zv′
]

Γsu′′
−nx

[
gv′′
]

Γsu′
(91)

With the interpolations (5) and (78), one may discretize
the local weak form (91) as

N

∑
I=1

nx
[
φI (x)v

]
Γsu

q̂I −
N

∑
I=1

nx
[
φI (x)v′

]
Γsu′

+
N

∑
I=1

nx
[
φI (x)v′′

]
Γsu′′

ĝI

+
N

∑
I=1

∫
Ωs

φI (x)
[
ûIv− ĝI v

′′′]dx

=
∫

Ωs

vdx−nx [qv]Γsu′′′
+nx

[
zv′
]

Γsu′′
−nx

[
gv′′
]

Γsu′
(92)

The collocation method is used to impose the boundary
condition as in equation (52). Substituting equation (85)
into equation (92), one can obtain a linear algebraic equa-
tion system of ûI.

The collocation method is used to impose the boundary
conditions, as in equation (43).

To illustrate the effectiveness of this method, we consider
the same numerical example again. Similarly, we start
with the cubic basis, i.e. m=4, in the MLS interpolation.
The weight function in MLS is taken to be equation (20),
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Figure 38 : The influence of the test domain size (41
nodes).

while the test function in LWF (49) is chosen to be equa-
tion (21). 41 nodes are used (h=0.025). Fig. 38 shows
the influence of the radius of the test domain on the errors
e0 and e1, where the radius of the trial function domain is
taken to be 4.5h. From this figure, it can be found that the
accuracy of the function u, as well as its first derivative,
is very high when the test function domain is big enough
(> h). The relative errors e0 and e1 are less than 0.1%,
when the radius of the test domain is greater than 1.5h.
It is noticed that the accuracy is not sensitive to the ra-
dius of the test domain from 1.5-5h. Fig. 39 shows the
influence of the radius of the trial domain on the errors e0

and e1, where the radius of the test domain is taken to be
3.5h. The results for the function u and its first derivative
are high accurate. The relative errors e0 and e1 are not
sensitive to the radius of the trial function domain from
3.5-7h. For the linear (m=2) basis, the same trends can
be observed. In this method, for m=2, the requirement of
a larger radius of the trial function domain is not needed
either.

The convergence rate is investigated with three nodal
configurations: 11, 21, and 41 nodes. We also consider
the effects of the basis functions: linear (m=2) and cu-
bic (m=4) bases are used in this investigation. For cubic
(m=4) basis, the radius of the test domain is taken to be
4h, and the radius of the trial domain is taken to be 5h.
For linear (m=2) basis, the radius of the test domain is
taken to be 3.5h, and the radius of the trial domain is

taken to be 4.5h. The relative errors e0 and e1 and the
convergence rates R of the displacement and first deriva-
tive are depicted in Fig. 40, for both m=4 and m=2. The
convergence rates R of the relative errors e2, e3 and ep

for the second, third derivatives and the energy, are plot-
ted in Fig. 41 only for m=4. It can be seen that the present
mixed MLPG method has very high rates of convergence
for norms e0, e1, e2, and ep, and gives very accurate re-
sults for the unknown variable, its first and second deriva-
tives, and the energy. The results from the cubic (m=4)
basis are more accurate, and are of higher convergent rate
than those from the linear (m=2) basis, although in this
method the results from m=2 are already very accurate.
However, the results for the third derivative are not very
accurate, while the convergence rate for the relative error
e3 is very high.

Compared to the corresponding primal MLPG method
based on the local weak form (48), this mixed MLPG
method requires less Gaussian points, is more stable, and
the results is of two-orders higher accuracy. This mixed
MLPG method is more accurate, cheaper and faster.

5.4 The local weak form 4

By using the auxiliary functions (75), the local weak
form (53) can be rewritten as

nx [qv]Γs
−nx

[
zv′
]

Γs
+nx

[
gv′′
]

Γs
−nx

[
uv′′′

]
Γs

+
∫

Ωs

u
d4v
dx4 dx+

∫
Ωs

(u−1)vdx = 0 (93)

Compared to the local symmetric weak form (53), the
LWF (93) has no derivative of the trial function in either
domain integration or local boundary integration.

Imposing the boundary conditions (29) and (30), one ob-
tains

nx [qv]Γsu′′′
+nx [qv]Γsu

+nx [qv]Ls

−nx
[
zv′
]

Γsu′′
−nx

[
zv′
]

Γsu′
−nx

[
zv′
]

Ls

+nx
[
gv′′
]

Γsu′
+nx

[
gv′′
]

Γsu′′
+nx

[
gv′′
]

Ls

−nx
[
uv′′′

]
Γsu

−nx
[
uv′′′

]
Γsu′′′

−nx
[
uv′′′

]
Ls

+
∫

Ωs

u
d4v
dx4 dx+

∫
Ωs

(u−1)vdx = 0 (94)
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Figure 39 : The influence of the trial domain size (41
nodes).
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Figure 40 : Convergence rate in relative errors e0 and e1.

In order to simplify the above equation, we can select a
test function v such that it and its first, second and third
derivatives vanish over Ls. Such a test function is given
in (21). Then, equation (94) can be rewritten as
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Figure 41 : Convergence rate in relative errors e2, e3, and
ep.

nx [qv]Γsu
−nx

[
zv′
]

Γsu′
+nx

[
gv′′
]

Γsu′′

−nx
[
uv′′′

]
Γsu′′′

+
∫

Ωs

u
d4v
dx4 dx+

∫
Ωs

uvdx

=
∫

Ωs

vdx−nx [qv]Γsu′′′
+nx

[
zv′
]

Γsu′′

−nx
[
gv′′
]

Γsu′
+nx

[
uv′′′

]
Γsu

(95)

With the interpolations (5) and (78), one may discretize
the local symmetric weak form (95) as

N

∑
I=1

nx
[
φI (x)v

]
Γsu

q̂I −
N

∑
I=1

nx
[
φI (x)v′

]
Γsu′

ẑI +

N

∑
I=1

nx
[
φI (x)v′′

]
Γsu′′

ĝI −
N

∑
I=1

nx
[
φI (x)v′′′

]
Γsu′′′

ûI

+
N

∑
I=1

∫
Ωs

φI (x)
[
v+

d4v
dx4

]
dxûI

=
∫

Ωs

vdx−nx [qv]Γsu′′′
+nx

[
zv′
]

Γsu′′

−nx
[
gv′′
]

Γsu′
+nx

[
uv′′′

]
Γsu

(96)

Substituting equation (85) into equation (96), one can ob-
tain a linear algebraic equation system of ûI .

Again, the same numerical example is considered to il-
lustrate the effectiveness of this method. We also start
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Figure 42 : The influence of the test domain size (41
nodes).

with the cubic basis, i.e. m=4, in the MLS interpolation.
The weight function in MLS is taken to be equation (20),
while the test function in LWF (95) is chosen to be equa-
tion (21). 41 nodes are used (h=0.025). Fig. 42 shows
the influence of the radius of the test domain on the errors
e0 and e1, where the radius of the trial function domain is
taken to be 4.5h. From this figure, it can be found that the
accuracy of the function u and its first derivative is high
when the trial function domain is big enough (≥ 2.5h).
Similarly, it is noticed that the accuracy is not sensitive to
the radius of the test domain from 3-6h, and the relative
errors e0 and e1 are less than 1%. Fig. 43 shows the influ-
ence of the radius of the trial domain on the errors e0 and
e1, where the radius of the test domain is taken to be 4h.
The results for the function u and its first derivative are of
high accuracy. The relative errors e0 and e1 are not sen-
sitive to the radius of the trial function domain. For the
linear (m=2) basis, the same trends can be observed. In
this method, for m=2, the requirement of a larger radius
of the trial function domain is no longer needed.

Similarly, the convergence rate is investigated with three
nodal configurations: 11, 21, and 41 nodes. We also con-
sider the effects of the basis functions: linear (m=2) and
cubic (m=4) bases are used in this investigation. For cu-
bic (m=4) basis, the radius of the test domain is taken to
be 4h, and the radius of the trial domain is taken to be 5h.
For linear (m=2) basis, the radius of the test domain is
taken to be 4h, and the radius of the trial domain is taken
to be 6.5h. The relative errors e0 and e1 and the conver-

gence rates R of the displacement and first derivative are
depicted in Fig. 44, for both m=4 and m=2. The con-
vergence rates R of the relative errors e2, e3 and ep for
the second, third derivatives and the energy, are plotted
in Fig. 45 only for m=4. It can be seen that the present
mixed MLPG method has very high rates of convergence
for norms e0, e1, e2, and ep, and gives very accurate re-
sults for the unknown variable, its first and second deriva-
tives, and the energy. However, the results for the third
derivative are not very accurate, while the convergence
rate for the relative error e3 is very high. In this method
the results from m=2 are also very accurate.

Compared to the corresponding primal MLPG method
based on the local weak form (39), this mixed MLPG
method requires less Gaussian points, is more stable and
accurate. This mixed MLPG method is also more accu-
rate than the corresponding first kind of mixed MLPG
method. This mixed MLPG method possesses very high
convergence rates for the displacement and its first to
third derivatives.

6 Conclusions

Both the primal and mixed MLPG methods are pre-
sented fro the 4th order ordinary differential equations.
Various local weak forms are developed. In the first
kind of mixed MLPG methods, both the displacement
and its second derivative are interpolated independently
through the moving least squares interpolation scheme.
In the second kind of mixed MLPG methods, the dis-
placement, its first derivative, the second derivative and
the third derivative are all interpolated independently
through the moving least squares interpolation scheme.
The mixed MLPG methods avoid the occurrence of high
order derivatives of the primary trial function, in the local
weak forms, and thus reduce the continuity-requirement
on the trial function. The mixed MLPG methods are far
more efficient than the primal MLPG methods. The nu-
merical examples demonstrate that both the primal and
mixed MLPG methods obtain accurate results and pos-
sess excellent rate of convergence for the displacement,
its first and second derivatives, and the energy. However,
among them, the second kind of mixed MLPG methods
give more stable and accurate results, and possess very
high convergence rates, even for the third derivative.
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Figure 43 : The influence of the trial domain size (41
nodes).

0.0001

0.001

0.01

0.1

1

0.025 0.05 0.075 0.1

Nodal distance (h)

R
e
la

ti
v
e
 e

rr
o

rs

e0 (m=4) R=3.14

e1 (m=4) R=3.17

e0 (m=2)

e1 (m=2)

Figure 44 : Convergence rate in relative errors e0 and e1.

search Laboratory, under a cooperative research agree-
ment with the University of California at Irvine. The
Cognizant Program Official at the U. S. Army Research
Labs is Dr. R. Namburu. Partial support for this work
was also provided by the Office of Naval Research, in
the program directed by Dr. Y.D.S. Rajapakse.

References

Atluri, S. N. (2004): The meshless method (MLPG) for
domain & bie discretizations. Tech Science Press, USA,
680 pages.

0.001

0.01

0.1

1

10

0.025 0.05 0.075 0.1

Nodal distance (h)

R
e
la

ti
v
e
 e

rr
o

rs

e2 R=2.99

e3 R=2.13

ep R=3.00

Figure 45 : Convergence rate in relative errors e2, e3, and
ep.

Atluri, S. N.; Cho, J. Y.; Kim, H. G. (1999): Analysis
of the beams, using the meshless local Petrov-Galerkin
method, with generalized moving least squares interpo-
lations. Comput. Mech. 24: 334-347.

Atluri, S. N.; Han, Z. D.; Rajendran, A. M. (2004):
A new implementation of the meshless finite volume
method, through the MLPG “mixed” approach. CMES:
Computer Modeling in Engineering & Sciences 6(6):
491-513.

Atluri, S. N.; Shen, S. (2002a): The meshless local
Petrov-Galerkin (MLPG) method. Tech Science Press,
USA, 440 pages.

Atluri, S. N.; Shen, S. (2002b): The meshless lo-
cal Petrov-Galerkin (MLPG) method: A simple & less-
costly alternative to the finite element and boundary ele-
ment method. CMES: Computer Modeling in Engineer-
ing & Sciences 3 (1): 11-52.

Atluri, S. N.; Zhu, T. (1998): A new meshless local
Petrov-Galerkin (MLPG) approach in computational me-
chanics. Comput. Mech. 22: 117-127.

Batra, R. C.; Ching, H. K. (2002): Analysis of
elastodynamic deformations near a crack/notch tip by
the meshless local Petrov-Galerkin (MLPG) method.
CMES: Computer Modeling in Engineering & Sciences
3 (6): 717-730.

Cho, J. Y.; Atluri, S. N. (2001): Analysis of shear
flexible beams, using the meshless local Petrov-Galerkin



268 Copyright c© 2005 Tech Science Press CMES, vol.7, no.3, pp.241-268, 2005

method, based on a locking-free formulation. Eng. Com-
put. 18 (1-2): 215-240.

Han, Z. D.; Atluri, S. N. (2004a): Meshless lo-
cal Petrov-Galerkin (MLPG) approaches for solving 3D
problems in elasto-statics. CMES: Computer Modeling
in Engineering & Sciences 6 (2): 169-188.

Han, Z. D.; Atluri, S. N. (2004b): A meshless lo-
cal Petrov-Galerkin (MLPG) approaches for solving 3-
Dimesnsional elasto-dynamics. CMC: Computer, Mate-
rials & Continua 1 (2): 129-140.

Li, Q.; Shen, S.; Han, Z. D.; Atluri, S. N. (2003):
Application of Meshless Local Petrov-Galerkin (MLPG)
to Problems with Singularities, and Material Discontinu-
ities, in 3-D Elasticity. CMES: Computer Modeling in
Engineering & Sciences 4(5): 567-581.

Lin, H.; Atluri, S. N. (2000): Meshless local Petrov-
Galerkin (MPLG) method for convection-diffusion prob-
lems. CMES: Computer Modeling in Engineering & Sci-
ences 1 (2): 45-60

Lin, H.; Atluri, S. N. (2001): The meshless local Petrov-
Galerkin (MPLG) method for solving incompressible
Navier-stokes equations. CMES: Computer Modeling in
Engineering & Sciences 2 (2): 117-142

Long, S. Y.; Atluri, S. N. (2002): A meshless local
Petrov-Galerkin method for solving the bending problem
of a thin plate. CMES: Computer Modeling in Engineer-
ing & Sciences 3 (1): 53-63.

Raju, I. S.; Phillips, D. R. (2003): Further Develop-
ments in the MLPG Method for Beam Problems. CMES:
Computer Modeling in Engineering & Sciences 4 (1):
141-160.

Shen, S.; Atluri, S. N. (2004): Multiscale simulation
based on the meshless local Petrov-Galerkin (MLPG)
method. CMES: Computer Modeling in Engineering &
Sciences 5(3): 235-255.

Shen, S.; Atluri, S. N. (2005): A tangent stiffness
MLPG method for atom/continuum multiscale simula-
tion. CMES: Computer Modeling in Engineering & Sci-
ences 7(1): 49-67.



Advances in Computational Mathematics (2005) 23: 73–93  Springer 2005

The basis of meshless domain discretization: the meshless
local Petrov–Galerkin (MLPG) method

Satya N. Atluri and Shengping Shen

Center for Aerospace Research & Education, University of California at Irvine, Irvine, CA 92697-3975,
USA

E-mail: satluri@uci.edu

Received 6 March 2003; accepted 8 December 2003
Communicated by Z. Wu and B.Y.C. Hon

The MLPG method is the general basis for several variations of meshless methods pre-
sented in recent literature. The interrelation of the various meshless approaches is presented
in this paper. Several variations of the meshless interpolation schemes are reviewed also.
Recent developments and applications of the MLPG methods are surveyed.

Keywords: MLPG, local weak form, meshless method

AMS subject classification: 65N30

1. Introduction

Meshless methods, as alternative numerical approaches to eliminate the well-
known drawbacks in the finite element and boundary element methods, have attracted
much attention in recent decades, due to their flexibility, and due to their potential
in negating the need for the human-labor intensive process of constructing geometric
meshes in a domain. Such meshless methods are especially useful in those problems
with discontinuities or moving boundaries. The main objective of the meshless meth-
ods is to get rid of, or at least alleviate the difficulty of, meshing and remeshing the
entire structure; by only adding or deleting nodes in the entire structure, instead. Mesh-
less methods may also alleviate some other problems associated with the finite element
method, such as locking, element distortion, and others.

Sometimes, in numerical simulations, a mesh may result in an inherent bias. For
example, the simulation of the strain localization problem is very sensitive to the mesh
alignment [38]. This is one of the reasons why the meshless method is so attractive.
Moreover, in the finite element method, the construction of even a C1 trial function ap-
proximation is difficult, and has been unsatisfactory so far. However, the trial functions
commonly employed in the MLPG method, can achieve high-order continuous approxi-
mations (even C∞ approximations) in a very straightforward manner. Hence, the MLPG
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method will clearly excel the finite element method, for materials with strain gradient
effects, and in thin-shell analysis.

The objective of this paper is to present an interrelation of the various meshless
approaches, and review the recent developments and applications of the MLPG meth-
ods. These approaches are associated with weak forms. Some meshless methods are
based on global weak forms. The major dilemma in the class of meshless methods,
which are based on the global weak forms, revolves around how to evaluate the inte-
grals in the weak form. In many methods, such as the element-free Galerkin method, the
background cells are used for this integration. As a matter of fact, the background cell
integration does not lead to a truly meshless method. Hence, in order to develop a truly
meshless method, the local weak forms must be used, so as to avoid the background
mesh, besides employing the meshless interpolations for trial and test functions. The
truly meshless method should be based on local weak forms, which is the main point
of the departure of the MLPG methods. The MLPG concept provides a rational basis
for constructing a variety of meshless methods. MLPG method is the general basis for
several recent published variations of meshless methods, such as the finite point method,
the finite cloud method, SPH, the finite sphere method, and the local point interpolation
method, etc., as shown in this paper. Moreover, the MLPG methods, based on local
weak formulations, can also include all the other meshless methods based on global
formulation, as special cases.

2. Basis of truly meshless methods: the local weak forms

In the MLPG method, a local weak form over a local subdomain �s, which is
located entirely inside the global domain �, is used. This is the most distinguishing
feature of the MLPG. Even though a particular approximation of the local weak form
gives the same resulting discretized equations, as from the Galerkin approximation of
the global weak form, the local weak form provides a clear concept for a local meshless
integration of the weak-form, which does not need any background integration cells over
the entire domain. Also, it leads to a natural way to construct the global stiffness matrix:
not through the integration over a contiguous mesh, and by assembly of the stiffness
matrices of the elements in the mesh, but through the integration over local subdomains.
These local subdomains may overlap each other. In contrast to the conventional Galerkin
finite element method, which is based on the global weak form, the MLPG method [7,8]
stems from a weak form over a subdomain �s as shown in figure 1, where the domain
of support of the test function �I

te is synonymous with the subdomain �s.
Consider a linear Poisson’s equation (in a global domain �, bounded by �):

∇2u(x) = p(x), x ∈ �, (1)

where p is a given source function, with boundary conditions

u = ū on �u; ∂u

∂n
≡ q = q̄ on �q, (2)
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Figure 1. Schematics of the MLPG method.

where ū and q̄ are the prescribed potential and normal flux, respectively, on the bound-
ary; and n is the outward normal direction to the boundary �. In general, according
to the computational modeling, there are two methods to solve equation (1): one is the
approximation of the strong forms of partial differential equations (PDEs), and another
is the approximation of the global weak forms of PDEs. However, after introducing the
“local” concept, both of these two methods can be derived from the local weak forms. As
the basis of the truly meshless methods, three local weak formulations of the differential
equation (1) are listed in this section.

A local unsymmetric weak formulation (LUSWF1) of the problem (1) is written as
∫

�s

(∇2u − p
)
v d� = 0, (3)

where u is the trial function, v is the test function. This LUSWF requires that u be at
least C1 continuous, while v may be discontinuous.

Using the divergence theorem, the local symmetric weak formulation (LSWF) is
obtained
∫

Ls

qv d�+
∫

�su

qv d�+
∫

�sq

q̄v d�−
∫

�s

(u,iv,i +pv) d�−α

∫
�u

(u−ū)v d� = 0 (4a)

in which, �sq is a part of ∂�s, over which the natural boundary condition is specified.
The LSWF requires that both u and v be C0 continuous.
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We can select a test function v such that it vanishes over Ls. Therefore the first inte-
gral in equation (4a) vanishes. Then, we obtain the following local weak form (LSWF),∫

�s

u,iv,i d�−
∫

�su

qv d�+α

∫
�u

uv d� =
∫

�sq

q̄v d�−
∫

�s

pv d�+α

∫
�u

ūv d�. (4b)

Using the divergence theorem twice yields another “local unsymmetric weak for-
mulation” (LUSWF2),∫

Ls

qv d� −
∫

Ls

uv,ini d� +
∫

�sq

q̄v d� +
∫

�su

qv d� −
∫

�sq

uv,ini d�

−
∫

�su

ūv,ini d� +
∫

�s

u∇2v d� −
∫

�s

pv d� = 0. (5a)

This LUSWF requires that v be at least C1 continuous, while u may be discontinuous.
Also, by selecting a test function v which vanishes over Ls, we obtain∫

�su

qv d� −
∫

Ls

uv,ini d� −
∫

�sq

uv,ini d� +
∫

�s

u∇2v d�

=
∫

�s

pv d� −
∫

�sq

q̄v d� +
∫

�su

ūv,ini d�. (5b)

It should be noted that these local weak forms (3)–(5) hold, irrespective of the size
and shape of ∂�s. With the local weak form for any point x, the problem (1) becomes
one as if we are dealing with a localized boundary value problem over an sphere �s.
The equilibrium equation and the boundary conditions are satisfied, a posteriori, in all
local subdomains and on their �s , respectively. Theoretically, as long as the union of
all local domains covers the global domain, the equilibrium equation and the boundary
conditions will be satisfied, a posteriori, in the global domain and on the boundary �,
respectively.

In MLPG, the Petrov–Galerkin method is used in each local subdomain, which uses
the trial function and test function from different spaces. If the local domain �s is taken
to be the entire domain �, we can get three corresponding ‘global’ weak formulations
of the differential equation (1). Many of the so-called meshless methods, such as the
EFG (element-free Galerkin) method, are based on the global weak form over the entire
domain �. In finite volume, boundary element, the Galerkin finite element, and element
free Galerkin [16] methods, which are based on the global Galerkin formulation, one
uses the global weak form over the entire domain � (or boundary), to solve the problem
numerically.

MLPG provides a rational basis for constructing meshless methods with a greater
degree of flexibility. The MLPG method is a very general concept whose underlying con-
cept serves as a basis for a large number of variously named minor variations, such as:
finite points method [39], finite spheres method [21], finite clouds method [1], boundary
node method [17], boundary clouds method [28], regular boundary node method [65],
SPH [36], etc.
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3. Meshless approximation of trial functions

In this section, various available methods of approximating a trial function over an
arbitrary domain without using a mesh, are discussed. In general, meshless interpola-
tions are constructed among a set of scattered nodes that have no particular topological
connection among them. An appropriate meshless interpolation scheme should satisfy
the following requirements:

1. Locality;

2. Continuity;

3. Consistency (or completeness).

Moreover, the sensitivity of any meshless interpolation scheme to a variable num-
ber of nodes in each interpolation domain must be low enough to preserve the freedom
of adding, moving or removing nodes. The first requirement is crucial to the meshless
method, for it makes the method efficient. Otherwise, the interpolation will produce a
full width stiffness matrix. The second arises from the local weak forms, which ensure
that the weak forms are integrable. The third depends on the order of the partial differ-
ential equations to be solved. The continuity and consistency conditions are related to
the convergence of the interpolant-based weak-form methods. A variety of typical local
interpolation schemes is summarized in this section.

The moving least-square method is generally considered to be one of the best
schemes to interpolate data with a reasonable accuracy. Here is given a brief summary
of the MLS, for its details, see [4,16].

Consider a subdomain �x, which is defined as the neighborhood of a point x and
denoted as the domain of definition of the MLS approximation for the trial function
at x. To approximate the distribution of the function u in �x, over N randomly located
nodes {xI }, the moving least squares approximant uh(x) of u, ∀x ∈ �x, can be defined
by

uh(x) = pT(x)a(x) ∀x ∈ �x, (6)

where pT(x) = [p1(x), p2(x), . . . , pm(x)] is a complete monomial basis, m is the num-
ber of terms in the basis; we denote by t the highest-order polynomial which is com-
pletely included in the basis; and a(x) is an m-length vector which are functions of the
space coordinates x. MLS interpolation possesses t-order completeness. The linear basis
assures that the MLS approximation has the linear completeness. Thus, it can reproduce
any smooth function and its first derivative with arbitrary accuracy, as the approximation
is refined. The vector a(x) is determined by minimizing a weighted discrete L2 norm:

J (x) =
N∑

I=1

wI(x)
[
pT(xI )a(x) − ûI

]2
, (7)
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where wI(x) is a weight function associated with the node I , with wI(x) > 0 for all x in
the support of wI(x). It should be noted that ûI are the fictitious nodal values, and not
the actual nodal values of the trial function uh(x), in general. Then, a relation is given as

uh(x) =
N∑

I=1

φI (x)ûI , uh(xI ) ≡ uI �= ûI , x ∈ �x. (8)

The expression of φI (x), the shape function of the MLS approximation, can be
found in [5]. The fact that φI (x) vanishes, for x not in the support of nodal point xI ,
preserves the local character of the moving least squares approximation. The nodal
shape function is complete up to the order of the basis. The smoothness of the nodal
shape function is determined by that of the basis, and of the weight function.

The choice of the weight function is more or less arbitrary, as long as the weight
function is positive and continuous. It is noted that the basis functions can be other
function than monomial. The smoothness of the shape functions φI (x) is determined by
that of the basis function P(x) and of the weight functions wI(x). Let wI(x) ∈ Ck(�)

and pj(x) ∈ Cl(�), the shape functions φI (x) ∈ Cr(�) with r = min(k, l). Usually,
the order of the continuity for the basis function P(x) is higher than that for the weight
functions wI(x), thus r = k. For example, for the monomial basis function, pj(x) ∈
C∞(�), in this case, the order of the continuity for the shape functions only depends
on the weight functions wI(x). Hence, it is easy for the MLS approximation to yield
a higher order of continuity for the shape functions, simply by increasing k. A simple
practical way is to use high-order spline functions. The following weight function is
recommended:

wI(x) =




1 −
p∑

k=1

ak

(
dI

rI

)k

, 0 � dI � rI = ρIhI ,

0, dI > rI = ρIhI ,

(9)

where dI = |x − xI |, hI in the nodal distance, ρI is the scaling parameter for the size of
the subdomain �I

tr, and p is the order of spline function. The coefficients ak are obtained
by taking the following boundary conditions:


wI

(
dI

rI

= 0

)
= 1, m0 = 0,

∂m0wI(dI /rI = 0)

∂xm0
= 0, m0 � 1,

and




wI

(
dI

rI

= 1

)
= 0, m1 = 0,

∂m1wI(dI /rI = 1)

∂xm1
= 0, m1 � 1,

(10)
where p = m0 + m1 + 1. The form of the weight functions may be changed by the
geometry of the subdomain �I

tr. Since the weight function is a type of a polynomial,
the “nodal shape function” has the characteristics of a rational function. m0 controls the
interior continuity in the local subdomain, while m1 controls the boundary continuity of
the local subdomain. One can easily obtain a global Cl continuity up to a desired order l

if the order of spline is changed. Therefore, the Cl continuity depends upon value of
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m0 and m1 in equation (10), i.e. φ(x) ∈ Cmin(m0,m1). It is very important to preserve the
smoothness of the derivatives of shape functions, because discontinuities and vertices in
the derivatives of the shape functions make numerical integration difficult.

The size of support, rI , of the weight function wI associated with node I should be
chosen such that rI should be large enough to have sufficient number of nodes covered in
the domain of definition of every sample point (N � m), in order to ensure the regularity
of A. A very small rI may result in a relatively large numerical error, while using the
Gauss numerical quadrature to calculate the entities in the system stiffness matrix. On
the other hand, rI should also be small enough to maintain the local character of the
MLS approximation. If N = m, no effect of the weight functions is presented and the
FEM type interpolation is recovered, then uh(xI ) = ûI .

The locality of the shape functions φI (x) is determined by the basis function P(x)

and the weight functions wI(x). For the monomial basis functions which are global, the
local weight functions wI(x) enable the shape functions φI (x) to be local.

A generalization of the MLS interpolation scheme using the data for the derivative
of a function, in addition to the value of the function itself, at a finite number of nodes,
can be found in [2].

Actually, MLS can be the general basis for several variations of meshless interpo-
lations, such as:

1. Shepard functions [47];

2. Least squares [39];

3. Local point interpolation [33];

4. Local radial point interpolation [33];

5. Compact support radial basis functions [59,63]; and so on.

If the MLS nodal shape functions only represent a globally constant function, i.e.
m = 1, we obtain the so-called Shepard function [47]. The Shepard functions satisfy
the zeroth order completeness. The Shepard shape functions have a simpler structure
than the higher order MLS shape functions, but they are still in a rational form. The
application of the Shepard function in MLPG the can be found in [5].

If the weight function in the MLS is taken to be the Heaviside function, then we can
get the local (truncated) least square (LSQ) scheme from the MLS. The computational
cost for calculating the local LSQ shape functions and their derivative is, of course, less
than that of MLS. However, the locality is coerced by the Heaviside function, which low-
ers the performance (including global continuity) of the shape functions. For Heaviside
function, m0 = ∞, m1 = −1, which leads to a global C−1 continuity shape function.
As shown by Onate et al. [39], the use of a Gaussian or spline weight function in MLS
improves considerably the results with respect to the least-square (LSQ) approach. As
noted in the beginning of this section, to add or delete nodes freely, the sensitivity of the
meshless interpolation scheme to a variable number of nodes in each interpolation do-
main �I

tr must be low enough. However, the local LSQ approximation is very sensitive
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to the neighbors of the evaluated node due to the truncated locality, while this sensi-
tivity is quite low in MLS methods [39]. Moreover, in MLS, a high-order continuous
approximation throughout the whole domain can be constructed for high-order differ-
ential equations easily, simply by adjusting value of m0 and m1 of the weight function,
without increasing the bandwidth. Those indicate some advantage of the MLS method
for practical applications.

If, in addition, we take N = m in local LSQ method, then one can get the so-called
local point interpolation [33]. Obviously, this method inherits all the shortcomings of
local LSQ scheme due to the same truncated locality, listed in the proceeding paragraph.
In [33], the basis functions are taken to be monomial; and thus, as a matter of fact, it
is not a new method: it is just a FEM type interpolation. Here, we list the procedure.
The unknown function u(x) can be interpolated from the neighboring nodes of a point x
using the polynomials basis functions as

uh(x) =
N∑

I=1

pI (x)aI = pT(x)a. (11)

The coefficients aI are determined by enforcing the above equation at the N

nodes surrounding point x, as u = Pa, where uT = [u1, u2, . . . , uN ], PT = [p1(x1),
p2(x2), . . . , pN(xN)]. Hence, it can be obtained that a = P−1u. So, we have

uh(x) = pTP−1u. (12)

For the monomial basis function pI (x), this procedure is totally same as that in the FEM.
In LPIM, to ensure N = m, where m is fixed for certain order completeness, it

means that the number of nodes in the local domain is constrained by the number of
the monomial basis functions; and thus, it reduces the flexibility of the meshless inter-
polation. Moreover, for an arbitrarily chosen set of scattered nodes, special techniques
should be used to assure a successful computation of shape functions (to avoid the ma-
trix P to be singular). If the basis functions are taken to be globally supported radial basis
functions, then one can get the so-called Local Radial Point Interpolation (LRPIM) [33].
This method is stable and flexible compared to LPIM. It is noted that the LRPIM method
suffers from a lack of consistency. Hence, to remedy this, a sum of polynomials up to
degree t with additional constraints is attached to the interpolation function [33,44]. The
details related to the radial basis functions can be founded in the review paper [44].

Compact support, positive definite Radial Basis Functions have been suggested
only recently [59,63]. If N = m is taken in MLS method, and the basis functions are
taken to be compact support radial basis functions, we get yet another new local interpo-
lation: Compact Support Radial Basis Functions (CSRBF). In this scheme, uh(xI ) = ûI .
In this case, the basis function is local because it is compact supported. Therefore, the
weight function can be taken to be 1, which belongs to C∞(�). The resulting shape
function is not truncated local. It is not sensitive to the neighbors of the evaluated node.
A high-order continuous approximation throughout the whole domain can be constructed
easily for high-order differential equations, simply by choosing higher-order continuous
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compact support radial basis function, without increasing the band-width. However, this
interpolation suffers from a lack of completeness. Atluri and Shen [5] employed this
interpolation in MLPG method. Zhang et al. [66] employed both global and compact
support radial basis function in the collocation method. The Hermite–Birkhoff-type in-
terpolation of scattered multidimensional data, through radial basis functions, can be
found in [62]; and this type of interpolation is desirable when the derivative is also used
as a degree of freedom at each node.

Meshless methods can also be based on partitions of unity [11]. PU method is not a
good choice for the MLPG method, since the test function needs m unknowns per node,
or indirectly, m test functions are needed; otherwise there are insufficient equations to
determine the unknowns. In addition, it is more time-consuming to form and solve the
resulting algebraic equations, since the dimension of the stiffness matrix will be m times
of that in the case when MLS are used [5].

The reproducing kernel particle method (RKPM) is developed in [32]. Here, the
shape function was derived from the reproducing conditions. The equivalence between
MLS and RKPM is discussed in [26].

There also exist some other meshless interpolations, such as smoothed particle
hydrodynamics (SPH) [36], finite cloud method [1], etc.

It is noted that the nodal shape functions (trial functions) from the MLS, Shepard
function, partition of unity, RKPM, and CS-RBF interpolations possess a high-order of
continuity. This high-order of continuity provides solutions with smooth derivatives,
and is very different to the FEM. Thus, these methods have the advantage of providing
better (smooth) approximation of stresses. Consequently, the postprocessing in MLPG
is relatively straightforward, and no additional stress smoothing is required. On the other
hand, the LPIM [33] and LRPIM [33] suffer from a lower continuity due to the truncated
locality; further more, the LPIM leads more or less to an FEM-type interpolation.

The approximations with N = m (LPIM, LRPIM, CSRBF), are interpolation type,
and possess Delta function property. The approximations with N �= m, are fit type and
do not possess Delta property. The latter are optimal methods, and hence, achieve a high-
order continuous approximation over the entire domain; this is one of the reasons why
a meshless method is beyond the FEM, as compared to LPIM, LRPIM, etc. Although
the interpolation type can result in simple shape functions, when compared to the fit
type, it still cannot remedy the integration difficulties in the meshless method. That
the Gaussian integration is not so good in a meshless method as in the FEM, is mainly
because the domain of the interpolation is different to the domain of the integration.
With the Delta property, in meshless method, the essential boundary conditions can be
directly implemented same as in FEM.

In trial-function interpolation schemes without the Kronecker delta properties, it
is not easy to implement the essential boundary conditions. However, the enforcement
of essential boundary conditions is not the problem now, some convenient treatments
have been proposed. In many researches, a Lagrange multiplier technique has been used
to impose the essential boundary conditions. However, this technique produces a non-
banded and a nonpositive definite stiffness matrix. One of the promising methods to
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enforce the essential boundary conditions in meshless methods is the penalty parameter
technique as developed by Zhu and Atluri [67], which is efficient and does not need any
other additional unknown variables. A collocation method is also a very important tech-
nique to enforce the essential boundary conditions in the meshless method [67] due to its
simplicity. Our numerical results show that both the penalty parameter and collocation
techniques are effective and convenient [4,5]. Another technique to exactly impose the
essential boundary conditions in meshless methods is a transformation method devel-
oped by Atluri et al. [3].

4. The basis of meshless domain discretization: the meshless local
Petrov–Galerkin (MLPG) approach

In general, in MLPG, the nodal trial and test functions can be different, the nodal
trial function may correspond to any one of the interpolant schemes listed in section 3;
and the test function may be totally different. Furthermore, the size of the subdomains
over which the nodal trial and test functions are, respectively, nonzero, may be different.

Soon after the debut of the concept of MLPG [7], variants of the MLPG method
appeared in literature, by using different trial-function interpolant schemes, or different
test functions, or different shapes of the support domain of the trial function, or differ-
ent shapes of the support domain of the test function, or even different shapes of the
local domain �s. Actually, if there are N different trial-function interpolating schemes,
M different test functions, L different shapes of the support domain of the trial function,
I different shapes of the support domain of the test function, and J different shapes of
the local domain �s, then (N × M × L × I × J ) number of MLPG methods can be
developed!

Based on the concept of the MLPG, the test functions over each local �s can be
chosen through a variety of ways:

(1) the weight function in the MLS approximation;

(2) the collocation Dirac’s Delta function;

(3) the error function in the differential equation, using discrete least squares;

(4) the modified fundamental solution to the differential equation;

(5) constant for second order PDE (or linear function for 4th order PDE);

(6) identical to the trial function;

(7) any other convenient functions.

We label these methods as MLPG1, MLPG2, MLPG3, MLPG4, MLPG5, and
MLPG6 corresponding to the first six terms, respectively [4,5].

As a known test function is used in the local weak form (LWF), the use of the LWF
for one point (and here for one domain �s) will yield only one algebraic equation. One
can obtain as many equations as the number of nodes. Hence, as many local domains
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�s as the number of nodes are needed in the global domain, in order to obtain as many
equations as the number of unknowns.

4.1. MLPG1, MLPG5, and MLPG6 based on the LSWF

MLPG1 is developed by employing the MLS weight function (9) (or some other
compact continuous functions) as the test function in each �s. Substitution of any mesh-
less interpolations listed in section 3 into the LSWF (4b) for all the nodes, leads to the
following discretized system of linear equations:

K · û = f, (13)

where the entries of the global ‘stiffness’ matrix K and the global ‘load’ vector f, respec-
tively, are defined as:

KIJ =
∫

�s

φJ
,k(x)v,k(x, xI ) d� −

∫
�Su

∂φJ (x)

∂n
v(x, xI ) d�

+ α

∫
�Su

φJ (x)v(x, xI ) d�, (14)

fI =
∫

�Su

q̄(x)v(x, xI ) d� −
∫

�s

p(x)v(x, xI ) d� + α

∫
�Su

ū(x)v(x, xI ) d�. (15)

The details of MLPG1 using the MLS, Shepard function and CSRBF to approxi-
mate the trial functions can be found in [5,7]. By employing LPIM and LRPIM to con-
struct the shape functions instead of MLS, Liu and Gu [33] repeated this procedure, and
get an MLPG1 method; however, they labeled it the “meshfree local point interpolation
method (LPIM)”.

MLPG5 is derived from the LSWF (4a); while any meshless interpolations can be
used to approximate the trial function. A constant function for second order PDE (or
linear function for 4th order PDE) is taken to be the test function in each �s. The reason
to choose such a test function is to try to avoid the domain integration in the LSWF. The
entries of the global ‘stiffness’ matrix K and the global ‘load’ vector f are defined by

KIJ = −
∫

Ls

φJ
,k(x)nk d� −

∫
�Su

φJ
,k(x)nk d� + α

∫
�Su

φJ (x) d�, (16)

fI =
∫

�Su

q̄(x) d� −
∫

�s

p(x) d� + α

∫
�Su

ū(x) d�. (17)

The numerical integration plays an important role in the convergence of numerical
solutions of meshless methods. It may be difficult to perform the domain integration
for the stiffness matrix in meshless methods, due to the fact that the domain of the
interpolation is different to the domain of the integration. From equation (16), it can be
seen that the domain integral over �s is altogether avoided, which greatly improves the
effectiveness of this method. Hence, this method is an attractive meshless method. The
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details of MLPG5 using the MLS, Shepard function and CSRBF to construct the shape
functions can be found in [4,5].

In MLPG6, the trial and test functions come from the same space. To obtain the
discrete equations from the LSWF (4b), any meshless interpolations can be used to ap-
proximate the trial function. The entries of the global ‘stiffness’ matrix K and the global
‘load’ vector f can be found in [5].

Atluri et al. [3] studied MLPG6 in great detail by using the MLS, Shepard function
and partitions of unity. Their results showed that the partition method for numerical
integration must be used to get a convergent result. Based on their research and the
results in [5], it can be concluded that the Galerkin method is not a good option for
the MLPG method, from the viewpoint of calculation and application. By employing
partition of unity to construct the shape functions, and taking the shape of the local
domain to be sphere, De and Bathe [21] repeated this procedure, and get an MLPG6
method; however, they called it the “method of finite sphere (MFS)”.

The test function can also be chosen to be any other function. Based on LSWF,
Barry and Thulasi [12] introduced Wachspress polynomials as test functions with the
subdomain to N -sided polygons (Wachspress cells), and use MLS to construct the trial
functions. They named it Wachspress MLPG method (WMLPG). However, in this
method, to form the Wachspress cells is the same as to generate meshes in FEM.

4.2. MLPG2 and MLPG3 based on LUSWF1

MLPG2 and MLPG3 are based on the local unsymmetric weak formulation
(LUSWF1) (3). MLPG2 employs the collocation Dirac’s Delta function as the test func-
tion in each �s. Any interpolations listed in section 3 can be used into the LUSWF1 (3)
for the internal nodes. The detail of MLPG2 can be found in [5]. MLPG2 does not
involve any numerical integration to generate the global stiffness matrix, so it is the
simplest form of the meshless method.

Thus, the collocation method can be treated simply as a special case of the MLPG
approach. Smoothed Particle Hydrodynamics (SPH) [36] is one of the earliest meshless
methods in computational mechanics. SPH can also be regarded as an MLPG2, by
using SPH to approximate the trial functions. Finite point method (FPM) [39] is a point
collocation method by employing the weighted least squares as the trial functions. If we
use the weighted least squares to approximate the trial functions in MLPG2, we can get
FPM. Using the finite cloud method to approximate the trial functions in MLPG2, one
can get finite cloud method (FCM) [1]. The details of MLPG2 using the MLS, Shepard
function and CSRBF to approximate the trial functions can be found in [5].

MLPG3 employs the error function as the test function in each �s. In this method,
the test function can also be assumed as in the discrete least square method. The test
function and the trial function come from the same space in MLPG3. Any interpolations
listed in section 3 can be used as the trial function. The entries of the ‘stiffness’ matrix K
and ‘load’ vector f are derived in [5].
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The details of MLPG3 using the MLS, Shepard function and CSRBF to approxi-
mate the trial functions can be found in [5]. In MLPG3, letting the local domain to be
the entire domain, in conjugation with MLS, leads to so-called least-squares meshfree
method (LSMFM) [43].

4.3. The LBIE based on LUSWF2

Based on the local unsymmetric weak formulation (LUSWF2) (5b), MLPG4 (the
LBIE) is developed by employing the modified fundamental solution u∗ (which vanishes
at ∂�s as long as ∂�s does not intersect with �), as the test function. Any meshless
interpolations discussed in section 3 can be used to approximate the trial function.

The details of this method, using the MLS, Shepard function and CSRBF to con-
struct the shape functions, can be found in [5,68]. It is noted that no derivatives of the
shape functions are needed, in constructing the stiffness matrix for the interior nodes, as
well as for those boundary nodes with no essential boundary condition prescribed sec-
tions on their local boundaries. However, singular integrals appear in the local boundary
integral equation (defined only over a sphere centered at each point in question), to which
special attention should be paid [50].

4.4. Summary

A summary of the meshless approximations is given in table 1, where t denotes
the highest-order of the polynomial which is completely included in the basis. A sum-
mary of the variety of MLPG methods is given in table 2. In this table, for convenience,
we denote the support of the trial function as �tr, and the support of the test function
as �te. The interrelationships of these developments can also be illustrated as in fig-
ure 2. Underlying all these meshless methods is the general concept of the meshless
local Petrov–Galerkin method; thus, MLPG provides a rational basis for constructing
meshless methods with a greater degree of flexibility.

In [5], a comprehensive study to these six MLPG methods is conducted. Among
them, MLPG5 yields somewhat of a better result than the others, while all the methods

Table 1
Selected meshless approximation of the trial function.

Interpolation (u) Continuity Completeness Delta function property

MLS (u1) Highorder t No
Shepard function (u2) High order 0 No
Partitions of unity (u3) High order t No
RKPM (u4) High order t No
LPIM (u5) �C0 t Yes
LRPIM (u6) �C0 t Yes
CS-RBF (u7) High order none Yes
Finite cloud (u8) High order t No
SPH (u9) High order 0 No
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Table 2
Meshless local Petrov–Galerkin (MLPG) methods.

Methods Test function (v) in �te Local weak form Relation between Integral to evaluate
over each �s �te and �tr the weak-form

MLPG1 MLS weight function (v1) LSWF �te < �tr Domain integral
MLPG2 Kronecker delta (v2) LUSWF1 �te can be arbitrary None
MLPG3 Least square φI

,ii
(x) (v3) LUSWF1 �te = �tr Domain integral

MLPG4 Fundamental solution u∗ (v4) LUSWF2 �te < �tr Singular boundary
integral

MLPG5 Constant (v5) LSWF �te < �tr Regular boundary
integral

MLPG6 Same as the trial function (v = u) LSWF �te = �tr Domain integral

possess high accuracy. For the trial-function interpolations, it seems that the MLS yields
somewhat of a better result than the Shepard function or the CSRBF. The rates of con-
vergence in all the MLPG methods, especially using the MLS and Shepard functions as
the trial function, are higher than that in the FEM.

MLPG has little or no preprocessing and postprocessing costs, thus the human-
labor cost in MLPG5 is negligible compared to that in FEM; for the same accuracy, the
computational cost in MLPG5 is also lower than that in FEM. Thus, we are certain that
MLPG5 may prove to be a simple and efficient alternative to the currently popular finite
element and boundary element methods.

5. Applications of the MLPG approach

Due to the distinct advantages, the MLPG methods are widely adopted as some of
the efficient computational techniques to solve applied mechanics problems.

Atluri and Zhu [9] solved some elasto-static problems by using MLPG1. Kim
and Atluri [27] solved some elasto-static problems by using MLPG6 with polygonal
local-domains, and a method which uses primary and secondary nodes in the domain
and on the global boundary is introduced. This method is very useful in an adaptive
calculation. Batra and his coworkers employed MLPG1 method to analyze static [19],
and transient [13] deformations near a crack/notch tip in a linear elastic plate. The row-
sum technique was used to obtain the lumped mass matrices. The Newmark family of
methods was taken as the time integration scheme. The numerical results showed that
the MLPG method is an appreciate tool to treat the elastic problem.

MLPG4 has been successfully applied to potential problems, elastostatics, elas-
todynamics, thermoelasticity, and plate bending problems [6,48,49,51,53–55,68,69].
A summary of recent developments in the applications of MLPG4 can be found in [52].

Using MLPG6 with generalized MLS to construct the shape functions, Atluri
et al. [2] studied the deformation of thin beams. Then, Cho and Atluri [20] extended
it to the shear flexible beams based on a locking-free formulation. Raju and Phillips [46]
applied MLPG1 and MLPG5 to a continuous beam problem to evaluate their effective-
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ness, and discussed the effects of various parameters on the numerical results clearly and
systematically. Their numerical results show that both MLPG1 and MLPG5 methods are
effective. Gu and Liu [24] analyzed the static and free vibration of thin plate by means
of MLPG1. Xiao and McCarthy [64] investigated the unilateral contact problem of beam
by using MLPG1. Long and Atluri [34] applied MLPG1 to solve thin (Kirchhoff) plates.
The quintic spline weight function is used in the MLS approximation, which leads to
C2 approximations. Their numerical results show that the MLPG method possesses an
excellent rate of convergence for the deflection and strain energy. Qian et al. [45] used
MLPG1 and MLPG5 to analyze the deformation fields in a thick plate with a higher-
order shear and normal deformable plate theory, and presented extensive studies on vari-
ous parameters of the MLPG method for plate problems. Their numerical results showed
that both MLPG1 and MLPG5 methods are effective to treat the elastostatic problem of
a plate.

Tang et al. [57] developed a true rotation-free numerical approach based on the
MLPG1 method for materials within the Toupin–Mindlin framework of strain gradient
type constitutive theory. The remarkable accuracy in these numerical simulations shows
promising characteristics of MLPG for solving general problems of material inelasticity,
where strain-gradient effects may be important.

Recently, the MLPG method is extended to the three dimension problem. Li
et al. [29] applied it to the 3-D problem problems with singularities, and material dis-
continuities. The high-order nature of MLPG provided accurate stress simulation when
dealing with singular problem like Boussinesq problem which is very difficulty for FEM.
Their numerical results also verified this viewpoint. With the combination of MLPG5
(interior) and MLPG2 (boundary), the truly meshless method can be applied efficiently
to any 3-D solid with complicated geometry.

MLPG method is also promising in fluid mechanics. In fact, the MLPG method
is much more flexible for introducing the upwinding concept, with very clear physi-
cal meaning. Several upwinding schemes for the MLPG method have been developed
and applied to simulate the convective–diffusive transport [30] and the incompressible
Navier–Stokes equations [31].

6. Other meshless methods

The research into meshless methods has become very active, only after the publi-
cation of the diffuse element method by Nayroles et al. [37]. Several so-called meshless
methods (Element Free Galerkin (EFG)) by Belytschko et al. [16]; Reproducing Kernel
Particle Method (RKPM) by Liu et al. [32]; the Partition of Unity Finite Element Method
(PUFEM) by Babuska and Melenk [11]; hp-cloud method by Duarte and Oden [22]; Nat-
ural Element Method (NEM) by Sukumar et al. [56]; Meshless Galerkin methods using
Radial Basis Functions (RBF) by Wendland [61]; have also been reported in literature
since then. The major differences in these meshless methods come only from the tech-
niques used for interpolating the trial functions. All those method is based on the global
symmetric weak forms. Even though no mesh is required in these methods for the in-
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terpolation of the trial and test functions for the solution variables, the use of shadow
elements is inevitable in these methods, for the integration of the weak-form, or of the
‘energy’. Therefore, these methods are not truly meshless. If we take the local domain
to be the entire domain in the local symmetric weak forms, and use the Galerkin method,
the meshless methods based on global symmetric weak forms can be derived from the
MLPG6 method. In general, MLPG method, based on local weak formulations, can
include all the other meshless methods based on global formulation, as special cases.
Besides in MLPG1, Liu and his coworkers [58] also used LPIM and LRPIM to construct
the shape functions in the global Galerkin method.

To avoid the background mesh in the methods based on the global weak forms,
Beissel and Belytschko [14] replaced the Gaussian quadrature with nodal integration.
However, the nodal integration leads to a numerical instability [14]. In order to avoid the
instability, a so-called stabilized conforming nodal integration was proposed by Chen
et al. [18]. A Voronoi diagram is employed to obtain representative nodal domain and
the associated weights for the stabilized conforming nodal integration. Hao et al. [25]
proposed the moving particle finite element method (MPFEM), which is a combination
of the finite element method and element-free Galerkin method. The nodal integration,
instead of Gaussian quadrature, is employed to integrate the global weak form. At each
node, the shape functions are constructed by enforcing certain reproducing conditions,
by means of neighboring nodes that form element-like configurations. To determine the
neighboring nodes, a searching algorithm was utilized. Then, the Delauney triangulation
is used to compute the integration weight for this node. This procedure is similar to that
of constructing elements.

Luan et al. [35] proposed a finite-cover element-free method (FCEFM). This
method is mathematically based on the finite cover of manifold. Based on the global
weak form, the system is discretized by virtue of the multiple weighted moving least
square approximation. To integral the global weak form, a so-called “moving window
procedure” is used: a rectangle or square window scans from one end of the domain to
another step by step. It is noted that the domain is scanned with the window with no
overlapping. As a matter of fact, this procedure is almost same as the use of background
mesh.

Pardo [40–42] developed a very interesting meshless method based on a path in-
tegral formulation of linear elasticity. The well-known Feynman path integral formula-
tion of quantum mechanics is equivalent to the Schrödinger equation. The differential
equation governing the continuum system can be replaced by a fictitious Feynman path
integral formulation by finding adequate infinitesimal Feynman propagators. Since the
Feynman path integral formulation is a global form, to avoid the background mesh, the
“local” concept must be introduced: a set of compact supported infinitesimal propaga-
tors are used. This method is a truly meshless method. However, it is not easy to derive
the Feynman propagators from functional integrations, especially the compact supported
infinitesimal Feynman propagators.
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7. Conclusion

This paper summarizes the recent developments in the meshless methods. It is
stated that MLPG is the general basis of truly meshless domain discretizations. Based
on the general concept of the meshless local Petrov–Galerkin (MLPG) method, different
types of meshless trial functions and different types of meshless test functions can be
used, leading to a large variety of MLPG methods. Due to the locality, absolutely no
meshes are needed in MLPG either for interpolation of the trial and test functions, or for
the integration of the weak forms, while in other meshless methods (such as the EFG)
require background cells. MLPG5 shows the potential to be a simple and efficient alter-
native to the currently popular finite element and boundary element methods. Although
the MLPG method has made some strides, there are still many challenges remaining,
such as an adequate numerical integration scheme, and its applications in the Nanotech-
nology, etc. A fast, accurate, cheap, and robust MLPG method is still on the way.
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Truly Meshless Local Petrov-Galerkin (MLPG) Solutions of Traction &
Displacement BIEs

Z. D. Han1 and S. N. Atluri1

Abstract: The numerical implementation of the truly
Meshless Local Petrov-Galerkin (MLPG) type weak-
forms of the displacement and traction boundary inte-
gral equations is presented, for solids undergoing small
deformations. In the accompanying part I of this pa-
per, the general MLPG/BIE weak-forms were presented
[Atluri, Han and Shen (2003)]. The MLPG weak forms
provide the most general basis for the numerical solu-
tion of the non-hyper-singular displacement and traction
BIEs [given in Han, and Atluri (2003)], which are sim-
ply derived by using the gradients of the displacements
of the fundamental solutions [Okada, Rajiyah, and Atluri
(1989a,b)]. By employing the various types of test func-
tions, in the MLPG-type weak-forms of the non-hyper-
singular dBIE and tBIE over the local sub-boundary sur-
faces, several types of MLPG/BIEs are formulated, while
also using several types of non-element meshless in-
terpolations for trial functions over the surface of the
solid. Specifically, three types of MLPG/BIEs are for-
mulated in that paper, i.e. MLPG/BIE1, MLPG/BIE2,
and MLPG/BIE6, as per the consistent categorizations of
the MLPG domain methods [Atluri and Shen (2002a)].
As the accompanying part II, this paper is devoted to
MLPG/BIE6. In particular, the moving least squares
(MLS) method has been extended for the approximation
on three dimensional surfaces, which makes it possible
for the MLPG/BIE methods to be truly meshless. Numer-
ical examples, including crack problems, are presented to
demonstrate that the present methods are very promising,
especially for solving the elastic problems in which the
singularities in displacements, strains, and stresses, are
of primary concern.

keyword: Meshless Local Petrov-Galerkin approach
(MLPG), Boundary Integral Equations (BIE), Non-
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Irvine, CA, 92612, USA

Hypersingular dBIE/tBIE, Moving Least Squares
(MLS), MLPG/BIE.

1 Introduction

The meshless local Petrov-Galerkin (MLPG) approach
has become very attractive as a very promising method
for solving partial differential equations. The MLPG
method was originally applied for domain discretizations
in Atluri and Zhu (1998). The main advantage of this
method over the widely used finite element methods is
that it does not need any mesh either for the interpo-
lation of the solution variables or for the integration of
the weak forms. The MLPG approach is very general,
and can be based on the symmetric or unsymmetric lo-
cal weak-forms of the PDEs, and uses a variety of in-
terpolation methods (trial functions), test functions, inte-
gration schemes with/without background cells, and their
flexible combinations. Such generality has been widely
investigated [Atluri and Shen (2002a,b)]. The many re-
search successes in solving PDEs, demonstrate that the
MLPG method, and its variants, become some of the
most promising alternative methods for computational
mechanics.

The boundary integral equations (BIEs) have also been
developed for solving PDEs, because of their efficiency
in certain applications, in comparison to the domain-
solution methods. They have been applied to solve lin-
ear elastic isotropic solid mechanics problems [Okada,
Rajiyah, and Atluri (1990)], 3-D dynamic problems
[Hatzigeorgiou, and Beskos (2002)], cracked plate prob-
lems [Wen, Aliabadi, and Young (2003), El-Zafrany
(2001)], acoustic problems [Gaul, Fischer,and Nacken-
horst (2003)], and biological systems [Muller-Karger,
Gonzalez, Aliabadi and Cerrolaza] (2001)]. It is well
known that the hyper-singularities of the traction BIEs,
as derived directly from differentiating the displacement
BIEs, hinder their applications in various numerical im-
plementations. The hyper-singular BIEs need some spe-
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cial treatments, such as the various de-singularization
techniques [Richardson and Cruse (1996)]. In contrast,
as far back as 1989, Okada, Rajiyah, and Atluri (1989a,b,
1990) have proposed a simple way to directly derive the
integral equations for the gradients of displacements. It
resulted in “non-hyper-singular” boundary integral equa-
tions for the gradients of displacements, and these have
been applied to solve the nonlinear problems success-
fully. Recently, this concept has been followed and
extended for a directly-derived traction BIE [Han and
Atluri (2002, 2003)], which is also “non-hyper-singular”
[1/r2], as opposed to being “hyper-singular” [1/r3]. Han
and Atluri (2003) have also proposed a very straight-
forward and simple procedure to de-singularize the “non-
hyper-singular” integrals, in order to render them nu-
merically tractable, with only a weak singularity. These
weakly-singular dBIE and tBIE are solved here by using
the MLPG approaches, by writing their local weak-forms
in the local sub-boundary surfaces. These meshless solu-
tion methods for solving BIEs are labeled as MLPG/BIE
approaches. The generalities of the MLPG/BIE ap-
proaches have been discussed in the accompanying part I
of the paper [Atluri, Han and Shen (2003)], in which vari-
ous forms of MLPG/BIEs were proposed. Some issues in
the numerical implementation have also been addressed
there.

In the present paper, we implement the formulations
proposed in Atluri, Han and Shen (2003) for the
MLPG/BIE6 and solve some elastic problems, includ-
ing fracture mechanics problems of non-planar crack-
growth. The MLS method is used to construct the inter-
polation functions on the surface of a three-dimensional
body. It is well unknown that the moment matrix be-
comes singular or nearly singular, if the 3-D Cartesian
coordinates are used in the MLS over a general 3-D sur-
face. For three dimensional surface cases, the curvilin-
ear coordinates are used in the boundary node method
(BNM) [Gowrishankar and Mukherjee (2002)], in which
the background cells are required for the approximation,
as well as for the integration. It prevents the meshless
BIE methods to be truly meshless, since it still involves
the mesh generation and re-meshing. As an alternate im-
plementation, the varying polynomial basis may be cho-
sen, with the use of Cartesian coordinates, so that the
singularity in the MLS is eliminated, as proposed for the
boundary cloud method (BCM) [Li and Aluru (2003)].
However, it is difficult to choose the polynomial basis

for the arbitrary 3D surfaces. Secondly, the local geome-
try information is required to help in choosing the basis.
The idea of the varying basis is promising, but is diffi-
cult for the numerical implementation, as worse results
were reported by the authors [Li and Aluru (2003)]. In
the present paper, we check the singularity of the mo-
ment matrix, and determine the local normal direction of
3D surfaces from its lowest eigenvector. Then, the singu-
larity of the moment matrix has been cancelled, by using
this information on the local normal direction. With this
extension, the local geometry information or the back-
ground cells are not required for the MLS, to construct
the interpolation functions. It leads to truly meshless
BIE methods, if the integration schemes are based on
nodal influence domains, as discussed in [Atluri, Han and
Shen (2003)]. In this paper, we focus on the displace-
ment and traction MLPG/BIEs in their local symmetric
weak-forms, with the combination of the enhanced MLS
surface interpolation method.

The outline of the paper is as follows: Section 2 sum-
marizes the non-hypersingular displacement and trac-
tion BIEs [Han and Atluri (2003)], and their MLGP ap-
proaches [Atluri, Han and Shen (2003)]; In Section 3,
the MLS approximation is extended to recondition the
singular or nearly singular moment matrix when it is ap-
plied for the approximation over the three dimensional
surface; Section 4 discusses the numerical results by us-
ing the moving least squares in the MLPG/BIE6 method.
Some conclusions are made in Section 5.

2 Non-Hyper-singular MLPG Displacement and
Traction BIEs

This section summarizes, for the sake of completeness,
the non-hypersingular MLPG displacement and traction
BIEs for a linear elastic, homogeneous, isotropic solid.
They were proposed and discussed in detail in [Atluri,
Han and Shen (2003)], by extending the general non-
hyper-singular dBIE and tBIEs through the MLPG ap-
proaches [Han and Atluri (2003)].

2.1 BIEs for elastic problems

Consider a linear elastic, homogeneous, isotropic body in
a domain Ω, with a boundary ∂Ω. The Lame’ constants
of the linear elastic isotropic body are λ and µ; and the
corresponding Young’s modulus and Poisson’s ratio are
E and υ, respectively. We use Cartesian coordinates ξ i,
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and the attendant base vectors e i, to describe the geom-
etry in Ω. The solid is assumed to undergo infinitesimal
deformations. The equations of balance of linear and an-
gular momentum can be written as:

∇∇∇ ·σσσ+ f = 0; σσσ = σσσt; ∇∇∇ = ei
∂

∂ξi
(1)

The strain-displacement relations are:

εεε =
1
2
(∇∇∇ u+u∇∇∇ ) (2)

The constitutive relations of an isotropic linear elastic ho-
mogeneous solid are:

σσσ = λ I(∇∇∇ ·u)+2µεεε (3)

The forms of the boundary integral equations, which are
used in the present paper, are given by [Han and Atluri
2003], for displacement,

up(x) =
∫

∂Ω
t j(ξ)u∗p

j (x,ξ) dS

−
∫

∂Ω
ni(ξ)u j(ξ)σ

∗p
i j (x,ξ) dS (4a)

and for traction

− tb(x) =
∫

∂Ω
tq(ξ)na(x)σ∗q

ab(x,ξ) dS

+
∫

∂Ω
Dpuq(ξ)na(x)Σ∗

abpq(x,ξ) dS (4b)

where u∗p
j , σ∗p

i j and Σ∗
abpq are kernel functions, which

were first given in Han and Atluri (2003) and listed in the
appendix for 2D and 3D problems separately; the surface
tangential operator Dt is defined as,

Dt = nrerst
∂

∂ξs
(5)

It should be pointed out that dBIE and tBIE in Eq.
(4) are directly derived without hyper-singularities, as
originally presented in [Okada, Rajiyah, and Atluri
(1989a,b)]. They are both numerically tractable after de-
singulariztion by using the identities of the fundamental
solution [Han and Atluri (2003)].

2.2 MLPG Approaches

The meshless approach for solving PDEs has attracted
much attention during the past decades. As a general
method, the MLPG approach was first proposed by Atluri
and Zhu (1998) for solving linear potential problems, by
using either a local symmetric weak form, or an unsym-
metric weak form of the governing equation over the lo-
cal sub domain, and such local domains may overlap
each other. The generality of the MLPG, and its vari-
ants, are comprehensively investigated in Atluri and Shen
(2002a,b). This approach can also be used for solving
BIEs, instead of using traditional element-based meth-
ods, such as the Boundary Element Method. Following
the general idea as presented in Atluri and Zhu (1998),
one may consider a local sub-boundary surface ∂ΩL, with
its boundary contour Γ L, as a part of the whole boundary-
surface, as shown in Figure 1, for a 3-D solid. Eq. (4)
may be satisfied in weak-forms over the sub-boundary
surface ∂ΩL, by using a Local Petrov-Galerkin scheme,
as:

x

33, xe

22
, xe

11
, xe

x

33
, xe

22 , xe11, xe

Figure 1 : A sub-part of the boundary around point x

∫
∂ΩL

wp(x)up(x)dSx

=
∫

∂ΩL

wp(x)dSx

∫
∂Ω

t j(ξ)u∗p
j (x,ξ) dS

−
∫

∂ΩL

wp(x)dSx

∫
∂Ω

ni(ξ)u j(ξ)σ
∗p
i j (x,ξ) dS (6a)
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−
∫

∂ΩL

wb(x)tb(x)dSx

=
∫

∂ΩL

wb(x)dSx

∫
∂Ω

tq(ξ)na(x)σ∗q
ab(x,ξ) dSξ

+
∫

∂ΩL

wb(x)dSx

∫
∂Ω

Dpuq(ξ)na(x)Σ∗
abpq(x,ξ) dSξ

(6b)

where w(x) is a vector test function. If w(x) is cho-
sen as a Dirac delta function, i.e. wb(x) = δ(x,xm) at
∂ΩL, we obtain the standard “collocation” method for
displacement and traction BIEs, at the collocation point
xm. Their detail de-singularized forms have been pre-
sented in Atluri, Han and Shen (2003). One may also
choose w(x) in such way that it is continuous over the
local sub boundary-surface ∂ΩL and zero at the contour
ΓL, and apply Stokes’ theorem to Eq. (6), and re-write it
as:

1
2

∫
∂ΩL

wp(x)up(x)dSx

=
∫

∂ΩL

wp(x)dSx

∫
∂Ω

t j(ξ)u∗p
j (x,ξ) dSξ

+
∫

∂ΩL

wp(x)dSx

∫
∂Ω

Di(ξ)u j(ξ)G∗p
i j (x,ξ) dSξ

+
∫

∂ΩL

wp(x)dSx

∫ CPV

∂Ω
ni(ξ)u j(ξ)φ∗p

i j (x,ξ) dSξ

(7a)

− 1
2

∫
∂ΩL

tb(x)wb(x)dSx

=
∫

∂ΩL

Dawb(x)dSx

∫
∂Ω

tq(ξ)G∗q
ab(x,ξ) dSξ

−
∫

∂Ω
tq(ξ) dSξ

∫ CPV

∂ΩL

na(x)wb(x)φ∗q
ab(x,ξ)dSx

+
∫

∂ΩL

Dawb(x)dSx

∫
∂Ω

Dpuq(ξ)H∗
abpq(x,ξ) dSξ

(7b)

where G∗q
ab, φ∗q

ab and H∗
abpq are fundamental solution re-

lated kernel functions and given in the appendix for both
2D and 3D problems.

In the present implementation, the test function w b(x)
is chosen to be identical to a function that is energy-
conjugate to up (for dBIE) and tb (for tBIE), namely,
the nodal trial function t̂p(x) and ûb(x), respectively, we
obtain the local symmetric Galerkin weak-forms of the
weakly singular dBIE and tBIE, as:

1
2

∫
∂ΩL

t̂p(x)up(x)dSx

=
∫

∂ΩL

t̂p(x)dSx

∫
∂Ω

t j(ξ)u∗p
j (x,ξ) dSξ

+
∫

∂ΩL

t̂p(x)dSx

∫
∂Ω

Di(ξ)u j(ξ)G∗p
i j (x,ξ) dSξ

+
∫

∂ΩL

t̂p(x)dSx

∫ CPV

∂Ω
ni(ξ)u j(ξ)φ

∗p
i j (x,ξ) dSξ (8a)

− 1
2

∫
∂ΩL

tb(x)ûb(x)dSx

=
∫

∂ΩL

Daûb(x)dSx

∫
∂Ω

tq(ξ)G∗q
ab(x,ξ) dSξ

−
∫

∂Ω
tq(ξ) dSξ

∫ CPV

∂ΩL

na(x)ûb(x)φ∗q
ab(x,ξ)dSx

+
∫

∂ΩL

Daûb(x)dSx

∫
∂Ω

Dpuq(ξ)H∗
abpq(x,ξ) dSξ

(8b)

3 Meshless Interpolation

The MLS method of interpolation is generally consid-
ered to be one of the best schemes to interpolate random
data with a reasonable accuracy [Atluri and Zhu (1998)].
Although the nodal shape functions that arise from the
MLS approximation have a very complex nature, they al-
ways preserve completeness up to the order of the chosen
basis, and robustly interpolate the irregularly distributed
nodal information. The MLS scheme has been widely
used in domain discretization methods [Atluri and Shen
(2002b)]. If we consider the MLS approximation on the
boundary of a 3D solid domain, i.e., a 3D surface, the
moment matrix in the MLS interpolation sometimes be-
comes singular, if global Cartesian coordinates are used
in describing the surface, and if the surface containing the
nodes in the domain of influence of the node in question
becomes nearly planar. The two surface-curvilinear co-
ordinates may be used here as an alternative choice, but it
requires the background cells, which hinders it from be-
ing a true meshless implementation. In the present study,
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we present a method to recondition the singular moment
matrix, while still using the global Cartesian coordinates
to approximate the trial function over a surface.

Consider a local sub-part of the boundary ∂Ω, of a 3-
D solid, denoted as ∂Ωx, the neighborhood of a point x,
which is a local region in the global boundary ∂Ω. To ap-
proximate the function u in ∂Ωx, over a number of scat-
tered points {xI}, (I = 1,2, ...,n) (where x is given, in the
global Cartesian coordinates by x1, x2 andx3), the mov-
ing least squares approximation u(x) of u, ∀x ∈ ∂Ω x, can
be defined by

u(x) = pT (x)a(x) ∀x ∈ ∂Ωx (9)

where pT (x) = [p1(x), p2(x), ... , pm(x)] is a monomial
basis of order m; and a(x) is a vector containing coef-
ficients, which are functions of the global Cartesian co-
ordinates [x1,x2,x3], depending on the monomial basis.
They are determined by minimizing a weighted discrete
L2 norm, defined, as:

J(x) =
m

∑
i=1

wi(x)[pT(xi)a(x)− ûi]2

≡ [P ·a(x)− û]T W[P ·a(x)− û] (10)

where wi(x) are the weight functions and û iare the ficti-
tious nodal values.

The stationarity of J in Eq. (10), with respect to a(x)
leads to following linear relation between a(x) and û,

A(x)a(x) = B(x)û (11)

where matrices A(x) and B(x) are defined by

A(x) = PT WP B(x) = PT W ∀x ∈ ∂Ωx (12)

The MLS approximation is well defined only when the
matrix A(x) in Eq. (11) is non-singular. It needs to be
reconditioned, if the monomial basis defined in the global
Cartesian coordinate system for an approximation of u
as in Eq. (9), becomes nearly linearly dependent on a
3-D surface. One may define a local set of orthogonal
coordinates, x′i as in Figure 1, on ∂Ωx. One may rewrite
Eq. (9) as:

u = [1;x1;x2;x3;x2
1;x2

2;x2
3;x1x2;x2x3;x3x1; ...]

[a1(x);a2(x);a3(x);a4(x); ...]T

≡ [1;x′1;x′2;x′3;x′21;x′22;x′23;x′1x′2;x′2x′3;x′3x′1; ...]
[a′1(x);a′

2(x);a′
3(x);a′

4(x); ...]T

for ∀x ∈ ∂Ωx (13)

Suppose ∂Ωx becomes nearly planar, which may be de-
fined in the local-set of orthogonal coordinates , for in-
stance, as x′3 = constant. It is then clear that the mono-
mial basis in Eq. (13), in terms of becomes linearly
dependent. In fact, one may make the basis to be lin-
early indepent again in Eq. (13), for instance, for x ′

3 =
constant, by setting the corresponding coefficients a ′(x)
to be zero. When this is done, the order of the vector
p′(x) is correspondingly reduced; and thus, correspond-
ingly, the order of A(x) in Eq. (11) is reduced. Thus,
it can be seen that if one proceeds with a full monomial
basis, with m basis functions in x i coordinates in Eq. (9),
and if the points on ∂Ωx are not all in the same plane, the
matrix A(x) in Eq. (11) will have the full rank of m. One
the other hand, if ∂Ωx becomes almost planar, say nor-
mal to x′3, then the rank of A(x) is clearly only (m−n),
where n is the reduction in the number of basis due to
the fact that x′3 = constant. Thus, by simply monitoring
the eigen-values of A(x), and if a set of eigen-values be-
comes nearly or precisely zero, we automatically detect
that ∂Ωx is becoming nearly planar. In addition, it implies
that the normal to the surface can be determined from the
lowest eigenvalue of matrix A(x) when it is singular or
nearly-singular, without the local geometry information.
It makes the present method to be truly meshless, which
does need any background cells to define the geometry
as well as the normal direction, if the boundary integrals
are handled based on the nodal influence domain [Atluri,
Han, and Shen (2003)].

Once coefficients a(x) in Eq. (11) are determined, one
may obtain the approximation from the nodal values at
the local scattered points, by substituting them into Eq.
(9), as

u(x) = ΦΦΦT (x)û ∀x ∈ ∂Ωx (14)

where ΦΦΦ(x) is the so-called shape function of the MLS
approximation, defined as,

ΦΦΦ(x) = pT (x)A−1(x)B(x) (15)

The weight function in Eq. (10) defines the range of in-
fluence of node I. Normally it has a compact support.
The possible choices are the Gaussian and spline weight
functions with compact supports, which have been fully
studied in Atluri and Shen (2002a).

It should be pointed out that the shape functions given in
Eq. (15) are based on the fictitious nodal values. This
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2/3 1/3

Figure 2 : A cube under uniform tension, and its nodal configurations

introduces an additional complication, since all the nodal
values in BIEs are the direct boundary values, a situa-
tion which is totally different from the domain meshless
methods. As a practical way, a conversion matrix is used
to map the fictitious values to true values and applied to
the system equations.

4 Numerical Experiments

Several problems in three-dimensional linear elasticity
are solved to illustrate the effectiveness of the present
method. The numerical results of the MLPG/BIE6
method as applied to problems in 3D elasto-statics,
specifically (i) a cube, (ii) a hollow sphere, (iii) a concen-
trated load on a semi-infinite space, and (iv) non-planar
fatigue growth of an elliptical crack, are discussed.

4.1 Cube under uniform tension

The first example is the standard patch test, shown in
Figure 2. A cube under the uniform tension is consid-
ered. The material parameters are taken as E = 1.0, and
ν = 0.25. All six faces are modeled with the same con-
figurations with 9 nodes. Two nodal configurations are
used for the testing purpose: one is regular and another is
irregular, as shown in Figure 2. In the patch tests, the uni-
form tension stress is applied on the upper face and the
proper displacement constraints are applied to the lower
face.

The satisfaction of the patch test requires that the dis-
placements are linear on the lateral faces, and are con-
stant on the upper face; and the stresses are constant
on all faces. It is found that the present method passes
the patch tests. The maximum numerical errors are

1.7×10−7 and 3.5×10−7 for two nodal configurations,
respectively, which may be limited by the computer.

4.2 3D Lamé problem

The 3D Lame problem consists of a hollow sphere under
internal pressure, as illustrated in Figure 3. The geometry
is defined with the inner and outer radius of 1.0 and 4.0,
respectively. The Young’s modulus is chosen as and the
Poisson ratio . The internal pressure is applied. The inner
and outer surfaces are modeled with 772 nodes in the
present analysis.

The radial displacement field is given in [Timoshenko &

b

a

p

Figure 3 : A hollow sphere under internal pressure
(Lame problem)
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problem

Goodier (1976)],

ur =
pRa3

E(b3−a3)

[
(1−2v)+(1+v)

b3

2R3

]
(16)

The radial and tangential stresses are

σr =
pa3(b3−R3)
R3(a3−b3)

σθ =
pa3(b3 +2R3)
2R3(b3 −a3)

(17)

The displacements are shown in Figure 4, and are com-
pared with the analytical solution. As shown in Figure
5, the radial and tangential stresses are compared with
the analytical solution. They agree with each other very
well.

4.3 A concentrated load on a semi-infinite space
(Boussinesq problem)

The Boussinesq problem can simply be described as
a concentrated load acting on a semi-infinite elastic
medium with no body force, as shown in Figure 6. Be-
cause of its strong singularity, it is difficult for mesh-
based domain methods without special treatments. As
one of the MLPG domain methods, MLPG5 was applied
to this problem in [Li, Shen, Han and Atluri (2003)]. We
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Figure 5 : Internal radial and tangential stresses for the
Lame problem

solve this problem here by using the MLPG/BIE meth-
ods to handle the strong singularity. A circular surface
with a radius of 20 is used to simulate the semi-infinite
space. It is modeled alternatively with two nodal config-
urations, as shown in Figure 7: one has 649 nodes and
another has 1417 nodes. Young’s modulus and Poisson’s
ratio are chosen to be 1.0 and 0.25, respectively.

The exact displacement field within the semi-infinite

P

y

x

r

R

z

Figure 6 : A concentrated load on a semi-infinite space
(Bossinesq Problem)
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(a)

(b)

Figure 7 : two nodal configurations for the Bossinesq
Problem: (a) 672 nodes, and (b) 1417 nodes

medium is given in [Timoshenko & Goodier (1976)],

ur =
(1+ν)P

2EπR

[
zr
R2 −

(1−2ν)r
R+ z

]

uw =
(1+ν)P

2EπR

[
z2

R2 +2(1−ν)
]

(18)

where ur is the radial displacement, and uw is the verti-

cal one, R is the distance to the loading point, r is the
projection of R on the loading surface.

The theoretical stresses field is:

σr =
P

2πR2

[
−3r2z

R3 +
(1−2ν)R

R+ z

]

σθ =
(1−2ν)P

2πR2

[
z
R
− R

R+ z

]

σz = − 3Pz3

2πR5

τzr = τrz = −3Prz2

2πR5
(19)

It is clear that the displacements and stresses are strongly
singular and approach to infinity; with the displacement
being O(1/R) and the stresses being O(1/R 2).

The vertical displacement uw alone the z-axis is shown in
Figure 8, and the radial and tangential stresses are shown
in Figure 9 and Figure 10. The analytical solution for the
displacement and stress are plotted on the same figures
for comparison purpose. The zoom-in views within the
shorter distance from the loading point are also shown
in each figure. The shortest distance is 0.0025, where
is very close the loading point and displacement and
stresses increase rapidly. It can be clearly seen that both
the MLPG/BIE displacement and stress results match the
analytical solution very well, even within the very short
distance, from the point of load application.

4.4 Non-planar Crack Growth

An inclined elliptical crack with semi-axes c and a, sub-
jected to fatigue loading, is shown in Figure 11. Its ori-
entation is characterized by an angle, α. This problem
has been solved by using the boundary element method
in [Nikishkov, Park, J.H., Atluri, S. N. (2001)] but it was
reported that only KI was obtained with the satisfactory
agreement with the theoretical solution while failing in
KII and KIII . The present meshless method is applied
to solve this problem, again. The nodal configuration
is used to model the crack inclined at 45 degrees with
249 nodes, as shown in Figure 12. The exact solution
for a tensile loading σ is given in [Tada, Paris and Irwin
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Figure 8 : Vertical displacement alone z-axis for the
Bossinesq problem

(2000)]:

KI = K0(1+cos2α)
1

E(k)
f (ϕ)

KII = K0 sin2α
k2(a/c)

B
cosϕ
f (ϕ)

KIII = K0 sin2α
k2(1−v)

B
sinϕ
f (ϕ)

(20)
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Figure 9 : Radial stress alone z-axis for the Bossinesq
problem

where ϕ is the elliptical angle and

K0 =
σ
√

πa
2

f (ϕ) = (sin2 ϕ +(a/c)2 cos2 ϕ)1/4

k2 = 1− (a/c)2

B = (k2−v)E(k)+v(a/c)2K(k) (21)

The elliptical integrals of the first and second kind, E(k)
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Figure 10 : Tangential stress alone z-axis for the Bossi-
nesq problem

and K(k), are defined as

K(k) =

π/2∫
0

dθ√
1−k2 sin2 θ

E(k) =

π/2∫
0

√
1−k2 sin2 θdθ (22)

As a mixed-mode crack, the distributionof all three stress
intensity factors, KI , KII and KIII, along the crack front
are shown in Figure 13, after being normalized by K0 as
defined in Eq. (21). It can be seen that a good agree-

2c

2a

Figure 11 : Inclined elliptical crack under tension

Figure 12 : Nodal configuration for an inclined elliptical
crack

ment of the present numerical results with the theoretical
solution is obtained.

The fatigue growth is also performed for this inclined
crack. The Paris model is used to simulate fatigue crack
growth. The crack growth rate with respect to the loading
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cycles, da/dN, is defined as:

da
dN

= C (∆Ke f f )n (23)

in which the material parameters C and n are taken for
7075 Aluminum as C = 1.49×10−8 and n = 3.21 [Nik-
ishkov, Park and Atluri(2001)]. The crack growth is
simulated by adding nodes along the crack front. The

newly added points are determined through the K solu-
tions. Seven increments are performed to grow the crack
from the initial size a = 1 to the final size a = 2.65.
The normalized stress intensity factors during the crack
growing are given in Figure 14, which are also normal-
ized by K0 in Eq. (21). The results show that KI keeps
increasing while KII and KIII are decreasing during the
crack growth. It confirms that this mixed-mode crack
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Figure 15 : Final shape of an inclined elliptical crack
after mixed-model growth

becomes a mode-I dominated one, while growing. The
shape of the final crack is shown in Figure 15. It is clear
that while the crack, in its initial configuration, starts out
as a mixed-mode crack; and after a substantial growth,
the crack configuration is such that it is in a pure mode-I
state.

5 Closure

In this paper, we numerically implemented the specific
symmetric form of “Meshless Local Petrov-Galerkin
BIE Method” (MLPG/BIE6). It is one of the general
MLPG/BIE methods, which are derived for displacement
and traction BIEs, by using the concept of the general
meshless local Petrov-Galerkin (MLPG) approach devel-
oped in Atluri et al [1998, 2002a,b, 2003]. The MLS
surface-interpolation, with the use of Cartesian coordi-
nates, is enhanced for the three dimensional surface with-
out the requirement of a mesh or cells, to define the lo-
cal geometry. It leads to the truly meshless BIE meth-
ods with the use of the nodal influence domain for the
boundary integrations. The accuracy and efficiency of
the present MLPG approach are demonstrated with nu-
merical results.
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Appendix

The displacement solution corresponding to this unit
point load is given by the Galerkin-vector-displacement-
potential:

ϕϕϕ∗p = (1−υ)F∗ep (24)

The corresponding displacements are derived from the
Galerkin-vector-displacement- potential as:

u∗p
i (x,ξ) = (1−υ)δpiF

∗
,kk −

1
2

F∗
,pi (25)

The gradients of the displacements are:

u∗p
i, j(x,ξ) = (1−υ)δpiF

∗
,kk j −

1
2

F∗
,pi j (26)

The corresponding stresses are given by:

σ∗p
i j (x,ξ)≡ Ei jklu

∗p
k,l

= µ[(1−υ)δpiF
∗
,kk j +υδi jF

∗
,pkk −F∗

,pi j ]
+µ(1−υ)δp jF

∗
,kki (27)

Three functions φ∗p
i j , G∗p

i j , Σ∗
i jpq and H∗

i jpq are defined as
[Han and Atluri (2003)]

φ∗p
i j (x,ξ)≡−µ(1−υ)δp jF∗

,kki (28)

G∗p
i j (x,ξ) = µ[(1−υ)eip jF

∗
,kk −eik jF

∗
,pk] (29)

Σ∗
i jpq(x,ξ) = Ei jklenlpσ∗k

nq(x,ξ) (30)

H∗
i jpq(x,ξ)

= µ2[−δi jF,pq +2δipF, jq +2δjqF,ip −δpqF,i j

−2δipδjqF,bb +2υδiqδjpF,bb +(1−υ)δi jδpqF,bb)] (31)
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For 3D problems,

F∗ =
r

8πµ(1−υ)
(32)

where r = ‖ξ−x‖

u∗p
i (x,ξ) =

1
16πµ(1−υ)r

[(3−4υ)δip + r,ir,p] (33)

G∗p
i j (x,ξ) =

1
8π(1−υ)r

[(1−2υ)eip j +eik jr,kr,p] (34)

σ∗p
i j (x,ξ) =

1
8π(1−υ)r2

[(1−2υ)(δi jr,p −δipr, j −δjpr,i)−3r,ir, jr,p] (35)

H∗
i jpq(x,ξ) =

µ
8π(1−υ)r

[4υδiqδjp −δipδjq −2υδi jδpq

+δi jr,pr,q +δpqr,ir, j −2δipr, jr,q −δjqr,ir,p] (36)

For 2D problems,

F∗ =
−r2 lnr

8πµ(1−υ)
(37)

u∗p
i (x,ξ) =

1
8πµ(1−υ)

[−(3−4υ) lnrδip + r,ir,p] (38)

G∗p
i j (x,ξ) =

1
4π(1−υ)

[−(1−2υ) lnr eip j +eik jr,kr,p] (39)

σ∗p
i j (x,ξ) =

1
4π(1−υ)r

[(1−2υ)(δi jr,p −δipr, j −δjpr,i)−2r,ir, jr,p] (40)

H∗
i jpq(x,ξ) =

µ
4π(1−υ)

[−4υ lnrδiqδjp + lnrδipδjq

+2υ lnrδi jδpq +δi jr,pr,q

+δpqr,ir, j −2δipr, jr,q −δjqr,ir,p] (41)
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The Applications of Meshless Local Petrov-Galerkin (MLPG) Approaches in
High-Speed Impact, Penetration and Perforation Problems

Z. D. Han1, H. T. Liu1, A. M. Rajendran2, S. N. Atluri3

Abstract: This paper presents the implementation of
a three-dimensional dynamic code, for contact, impact,
and penetration mechanics, based on the Meshless Local
Petrov-Galerkin (MLPG) approach. In the current im-
plementation, both velocities and velocity-gradients are
interpolated independently, and their compatibility is en-
forced only at nodal points. As a result, the time con-
suming differentiations of the shape functions at all in-
tegration points is avoided, and therefore, the numerical
process becomes more stable and efficient. The ability
of the MLPG code for solving high-speed contact, im-
pact and penetration problems with large deformations
and rotations is demonstrated through several compu-
tational simulations, including the Taylor impact prob-
lem, and some ballistic impact and perforation problems.
The computational times for the above simulations are
recorded, and are compared with those of the popular
finite element code (Dyna3D), to demonstrate the effi-
ciency of the present MLPG approach.

keyword: Meshless method, MLPG, High-speed im-
pact, Penetration

1 Introduction

With the dramatically increased high-performance com-
putational power, computational mechanics has become
an important tool in both civilian and military system de-
sign and analysis. Although the finite element method
(FEM), as the most recognized approach, has achieved
a phenomenal success, accurate and efficient numerical
simulations of armor/anti-armor systems is still a chal-
lenging task, due to the fact that these applications al-
ways involve high strain rate, non-linear deformation and
severe element distortion. Recently, a great effort has
been put into this field. Johnson et al (2003) proposed an

1 Knowledge Systems Research, LLC, Forsyth, GA 30253
2 US Army Research Office (ARO), RTP, NC
3 Center for Aerospace Research & Education, University of Cali-
fornia, Irvine

“element to particle” conversion method to alleviate the
problem of highly distorted meshes in fracture and frag-
mentation problems. This mixed mesh/particle method
seems to provide stable and useful solutions to several
impact problems; however, these types of numerical ap-
proaches tend to remain “phenomenological”, and are
limited to a small class of problems. Ortiz and his col-
leagues developed FEM based fracture and fragmenta-
tion algorithms, in which cohesive zones are assumed
between element boundaries, and cracks can be prop-
agated between the elements using cohesive laws [Or-
tiz and Pandolfti (1999)]. They used advanced nonlin-
ear error estimation and non smooth contact algorithms
to assure numerical accuracy and stability. Unfortu-
nately, this advanced FEM approach seems to suffer from
mesh-influenced solutions. In addition, these element-
based approaches require a tremendous effort in generat-
ing good quality meshes for complex geometrics, and for
component assemblies.

In contrast, the meshless methods have become very at-
tractive for eliminating the mesh distortion problems due
to large deformations. Some meshless methods are based
on the global weak forms, such as the smooth particle hy-
drodynamics (SPH), and the element-free Galerkin meth-
ods (EFG). They may require a certain node distribution
pattern, or background cells for integration, which may
be not lead to satisfactory solutions when meshes are
severely distorted during large deformations. In addi-
tion, in the usual meshless approaches, the shape func-
tions are generally very complicated, which results in
even more complicated derivatives. Thus, the accurate
calculation of the shape function derivatives is always
a time-consuming task, and many more Gaussian points
are required in the domain integration. The high compu-
tational expense and complexity is a barrier that prevents
the application of meshless method to large-scale simu-
lations. Most of the current meshless codes and applica-
tions are restricted to two-dimensional demonstrations.

Recently, Atluri and his colleagues [Atluri and Zhu



120 Copyright c© 2006 Tech Science Press CMES, vol.14, no.2, pp.119-128, 2006

(1998), Atluri and Shen (2002), and Atluri (2004)] pro-
posed a general framework for developing the Meshless
Local Petrov-Galerkin (MLPG) approach, which pro-
vides flexibility in choosing the local weak forms, the
trial functions, and the independent test functions for
solving systems of partial differential equations. The
MLPG approach has the following advantages: (1) all
weak forms are formulated locally; (2) various trial and
test functions can be chosen and combined together for
solving one problem; (3) overlapping local sub-domains
can be chosen in such a way as to match problems and
algorithms in any special cases. The flexibility in choos-
ing and combining various trial and test functions make
the simplification of meshless formulation possible. For
example, by choosing the heavy-side function (a unity-
valued function inside the sub-domain, and zero out-
side the sub-domain), the domain integration is elimi-
nated and the local symmetric weak form is expressed
as a boundary integration. This will reduce the number
of integration points, and greatly increase the accuracy
and efficiency. In the MLPG method, the equilibrium
and energy conservation equations are written locally
within the subdomains, which make the parallel com-
putation straightforward. As an extension, a meshless
mixed finite volume method is proposed [Atluri, Han and
Rajendran (2004), Han, Rajendran and Atluri (2005)]
to further simplify the meshless formulations. In the
MLPG mixed method, the displacement-/velocity- gra-
dients are interpolated independently from the displace-
ment/velocity interpolations. The compatibility between
the displacements/velocities and displacement-/velocity-
gradients is enforced only at nodal points. The mixed
MLPG does not require the calculation of the deriva-
tives of the complex shape functions, and thus achieves
more computational accuracy and efficiency. It should
be pointed out that the MLPG mixed method is radi-
cally and fundamentally different from the finite-element
mixed method, which is a saddle point variational prob-
lem and which is often plagued by the stability conditions
such as the Brezzi-Babuska conditions(Xue , Karlovitz,
and Atluri(1985).

In the present paper, the above described MLPG mixed
method is implemented in an explicit-time-integration
computational code, with an updated Lagrangean de-
scription. For completeness purpose, a brief description
of the MLPG mixed method is presented in the follow-
ing section. Several numerical examples are presented to

show the applicability of the meshless program.

2 MLPG Formulation

2.1 Local Nodal Interpolation

An appropriate meshless interpolation scheme should
satisfy the locality, continuity, and consistency require-
ments. Among a variety of local interpolation schemes,
the Moving Least Squares (MLS) interpolation is gener-
ally considered to be one of the best schemes to inter-
polate random data with a reasonable accuracy, because
of its completeness, robustness and continuity. With the
MLS, a trial function u(x) can be expressed as

u(x) =
N

∑
I=1

ΦI(x)ûI (1)

where ûI and ΦI(x) are the fictitious nodal values, and
the shape function of node I, respectively. The shape
functions are obtained by minimizing the L2 norm of the
weighted distance between the trial function value and its
true values at nodal points. For a detailed derivation and
explicit expressions for the shape functions, the readers
are referred to Atluri (2004).

The MLS nodal shape function ΦI(x) has a rational form,
and it is non-zero only inside the support domain of its
corresponding node I. We define the nodes whose sup-
port domain covers x as the neighbor node of x. The
trial function u(x) is only relying on its immediate neigh-
bors’ nodal values and thus the locality is preserved. The
smoothness of the shape function ΦI(x) is determined by
its basis functions and the weight functions. Therefore, it
is easy for the MLS approximation to yield a high-order
continuity for the shape functions and then the trial func-
tions. In practice, polynomials are adopted as the basis
functions and spline functions as the weight functions.
Therefore, to construct a more continuous shape function
will be a trivial task. The MLS interpolation constructed
in Eq. (1) is able to represent the jth ( j=1,2, . . . m, with
m is the number of the polynomial basis functions) com-
ponent of monomials exactly. In other words, the shape
function is consistent.

In the mixed method, we interpolate the velocities vi

and velocity gradients vi, j independently using the same
shape functions, namely

vi(x) =
N

∑
J=1

ΦJ(x)vJ
i (2)
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vi, j(x) =
N

∑
K=1

ΦK(x)vK
i, j (3)

The compatibility condition between the velocities and
velocity gradients is enforced only at the nodes by a stan-
dard collocation method as

vi, j(xI) =
∂vi(xI)

∂x j
(4)

By interpolating the velocity gradients, as one of the key
features of the mixed method, we eliminate the differ-
entiation operations of the shape functions in the local
weak form integration. Therefore, the requirement of
the completeness and continuity of the shape functions
is reduced by one-order, and thus, lower-order polyno-
mial terms can be used in the meshless approximations.
This leads to a smaller nodal influence size and speeds
up the calculation of the shape functions. The adoption
of the mixed method in our implementation greatly im-
proves the program efficiency.

2.2 Formulations for Finite Strain Problems

Since the purpose of the developed MLPG program is
to simulate high-speed dynamic problems, we adopted
an updated Lagrangian formulation in our implementa-
tion. Let xi be the spatial coordinates of a material par-
ticle in the current configuration. Let Ṡi j be the Trues-
dell stress-rate (the rate of second Piola-Kirchhoff stress
as referred to the current configuration); and let σ̇J

i j be
the Jaumann rate of Kirchhoff stress (which is J times
the Cauchy stress, where J is the ratio of volumes). It is
known [Atluri (1980)]:

Ṡi j = σ̇J
i j −Dikσk j −σikDk j (5)

Here, Di j and Wi j are the symmetric and skew-symmetric
parts of the velocity gradient, respectively. Considering
a 3D domain Ω with a boundary ∂Ω, the rate forms of
the linear and angular momentum balances are [Atluri
(1980)]:

(Ṡi j +τikv j,k),i + ḟ j = ρȧ j (6)

where, ρ is the mass density and ȧ j the acceleration
rate. In a dynamic problem, ḟ j are appropriately de-
fined in terms of the rate of change of inertia forces and
( ),i = ∂( )/∂xi; xi are current coordinates of a material
particle. In Eq. (6), τi j is the Cauchy stress in the current
configuration.

2.3 Local weak form with the large deformations

In the MLPG approaches, the weak form is established
over a local subdomain Ωs, which may have an arbitrary
shape and contain a point x in question. In our implemen-
tation, the local weak form is established for a spherical
subdomain with the radius of r (we define it as the test-
function size), namely
Z

Ωs

[(Ṡi j +τikv j,k),i + ḟ j −ρȧ j]wjdΩ = 0 (7)

where wj are the test functions. By applying the diver-
gence theorem Eq. (7) may be rewritten in a symmetric
weak form as:
Z

∂Ωs

(Ṡi j +τikv j,k)niwjdΓ

−
Z

Ωs

[(Ṡi j +τikv j,k)wj,i− ḟ jw j +ρȧ j]dΩ = 0 (8)

with the rate definition ṫ j = (Ṡi j + τikv j,k)ni , and with
ni being the components of a unit outward normal to the
boundary of the local subdomain Ωs, in its current con-
figuration. Thus the local symmetric weak form can be
rewritten as
Z

Ls

ṫiwidΓ+
Z

Γsu

ṫiwidΓ+
Z

Γst

ṫiwidΓ

−
Z

Ωs

[(Ṡi j +τikv j,k)wj,i− ḟiwi +ρȧ j)dΩ = 0 (9)

where Γsu is a part of the boundary ∂Ωs of Ωs, over which
the essential boundary conditions are specified. In gen-
eral, ∂Ωs = Γs ∪ Ls, with Γs being a part of the local
boundary located on the global boundary, and Ls is the
other part of the local boundary which is inside the solu-
tion domain. Γsu = Γs∩Γu is the intersection between the
local boundary ∂Ωs and the global displacement bound-
ary Γu; Γst = Γs ∩Γt is a part of the boundary over which
the natural boundary conditions are specified.

To simplify the integration and speed up the numerical
implementation, the Heaviside function is adopted as the
test function in our program program( Thus, the method
is labeled here as the “ finite-volume” MLPG method).
Thus, the local symmetric weak form in Eq.(9) becomes

−
Z

Ls

ṫidΓ−
Z

Γsu

ṫidΓ+
Z

Ωs

ρȧ jdΩ =
Z

Γst

ṫ idΓ+
Z

Ωs

ḟidΩ

(10)
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This equation has the physical meaning that it represents
the balance law of the local sub-domain Ωs, as in con-
ventional finite volume methods.

3 Numerical Implementation

In this section, we will address some numerical issues in
the implementation of the MLPG mixed method.

3.1 Determination of the Support Sizes

The support size is an important parameter in the MLPG
calculation. On the one hand, the support size should be
large enough to include enough neighboring nodes to en-
sure the regularity and reduce the computational error;
on the other hand, we should keep the support size rela-
tively small to maintain the interpolation’s locality. In the
current implementation, the support size for each node is
determined automatically from the neighbor nodes, on
demand.

To ensure the regularity of the MLS interpolation, the
minimum number of the linearly independent neighbor
nodes is decided by the order of the polynomial basis.
For the three-dimensional problems, the neighbor node
number m is calculated from the order of the polynomial
basis t as [Atluri (2004)]

m = (t +1)(t +2)(t +3)/6 (11)

Eq. (11) means that for each point x, it is required that
there are m neighbor nodes whose support domains cover
the point x. On other words, for a node J, its support size
should be large enough to cover all the nodes, of which
the node J is a neighbor node. To increase the efficiency
of the present implementation, the support sizes are not
recalculated for each time step. Therefore, a scale factor,
which is great than 1, is applied to the support sizes de-
cided by the above procedure, to account for the effect of
the nodal movement from the body’s deformation.

3.2 Determination of the Test Sizes

The test domains in the MLPG could be any overlapping
local domains. A spherical domain centered at each node
is adopted in the present implementation. For a node I,
the radius of the spherical domain (the test size) is deter-
mined as

rI
0 = αmin

{∥∥xI −xJ
∥∥} , J = 1,2, ...,N and I �= J (12)

where α is the scale factor of the test size, which is a
constant between 0 and 1. In addition, if node I is inside
the solution domain, but close to the global boundary, a
smaller radius may be used so that the local sphere has no
intersection with the global boundary. In other words, the
local test domains of all internal nodes are restricted to be
inside the solution domain, and their local boundaries are
also inside the solution domain. Therefore, the numeri-
cal implementation becomes much simpler, because the
essential and natural boundary conditions appear in the
integrals of the nodes on the global boundary only.

3.3 Numerical Quadrature

In the present implementation, the integrations of the lo-
cal symmetric weak form [Eq. (10)] are performed nu-
merically by using the conventional Gaussian quadrature
scheme. The boundary integration in Eq. (10) over a
spherical surface involves the trigonometric functions. It
is well known that the conventional numerical quadrature
schemes are designed for polynomials, and are not effi-
cient for trigonometric or rational functions. To improve
the performance of the numerical integration, the local
subdomain (i.e. a sphere) is partitioned by triangles for
the surface integration [Han and Atluri (2004)].

3.4 Time Integration

The well known and commonly accepted Newmark β
method [Newmark (1959)] is used in the present imple-
mentation to integrate the governing equations in time.
With the determined accelerations from the system equa-
tions based on the local symmetric weak form [Eq. (10)],
the displacements and velocities are calculated from the
standard Newmark β method as

ut+Δt = ut +Δtvt +
Δt2

2

[
(1−2β)at +2βat+Δt]

vt+Λt
c = vt +Δt

[
(1− γ)at + γat+Δt] (13)

For zero damping system, this method is unconditionally
stable if

2β ≥ γ ≥ 1
2

(14)

and conditionally stable if

γ ≥ 1
2
, β ≤ 1

2
and Δt ≤ 1

ωmax
√

γ/2−β
(15)
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where ωmax is the maximum frequency in the structural
system.

This method can be used in the predictor-corrector mode,
with specified initial conditions [Atluri (2004)]. In the
present implementation, the central difference scheme is
used by setting β = 0 and γ = 1/2.

4 Ceramic Constitutive Model with Damage

In the present implementation, the Rajendran and Grove
(RG) ceramic damage model is adopted to model the
material damage and failure during the impact and pen-
etration process. The RG ceramic model [Rajendran
(1994); Rajendran and Grove (1996)] is a sophisticated,
three-dimensional, internal-state-variable-based consti-
tutive model for ceramic materials, which incorporated
both micro-crack propagation and void collapse. The
proposed RG ceramic damage model has achieved a great
success in describing the response of alumina (AD85)
subjected to various stress/strain loading conditions [Ra-
jendran (1994)]. In this section, the RG ceramic damage
model is briefly reviewed and the main formulation is
presented for completeness purposes.

4.1 Constitutive Relationships

In the RG model, the total strain εi jis decomposed into
the elastic part εe

i j and plastic part εp
i j. The pressure is

calculated through the Mie-Gruneisen equation of state
as

P =
[
PH (1−0.5Γη)+Γρ0 (I − I0)

]
(16)

with

PH = Kγ
(
β1η+β2η2 +β3η3) (17)

In the above equations, β1, β2 and β3 are empirical pa-
rameters; Γ is the Mie-Gruneisen parameter; Kγ = K/K
is the bulk modulus reduction ratio, with K being the bulk
modulus for the intact matrix and K the effective bulk
modulus for the micro-crack containing material. Fur-
thermore, ρ0 is the initial material density; I0 and I are
the internal energy at the initial and current states, re-
spectively. The engineering volumetric strain, with the
consideration of the voids, is defined as

η =
(1− f0)V0

(1− f )V
−1 (18)

Where V0 and V are the volumes of the initial and cur-
rent states; f0 and f are the initial and current porosity
densities, respectively.

The deviatoric stress is related with the deviatoric elastic
strain ee

i j as

Si j = 2RgGee
i j (19)

Here G is the effective shear modulus for micro-crack
containing material and Rg is the correction factor for
shear modulus due to the existence of porosity, which is
given in Rajendran and Grove’ paper (1996). The poros-
ity density is assumed to decrease due to void collapsing
at pressures above the HEL as

ḟ = (1− f ) ε̇p
v (20)

with εp
v the plastic volumetric strain and the dot means

the temporal derivative.

When the materials are shocked above the HEL (Hugo-
niot Elastic Limit), plastic flow occurs. In the current
model, Gurson’s pressure dependent yield function, with
considerations of the porosity, is adopted, namely

F =
3J2

Y 2 +2 f cosh

(
3P
2Y

)
− f 2 −1 = 0 (21)

with J2 = 0.5Si jSi j. A simplified Johnson-Cook strain
rate dependent strength model is used and can be ex-
pressed as

Y = C1

(
1+C3 ln

ε̇p

ε̇0

)
(22)

where C1 and C3 are model constants. ε̇p is the equivalent
plastic strain rate and ε̇0 is the reference strain rate, which
is assumed to be 1 in the current model.

4.2 Damage Definition and Evolution

The micro-crack damage is measured in terms of a di-
mensionless micro-crack damage density γ, which is ex-
pressed as

γ = N∗
0a3 (23)

where N∗
0 is the average number of micro-flaws per unit

volume and a is the maximum micro-crack size at the
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current state. The initial values of N∗
0 and a0 are mate-

rial constants. For simplicity, it is assumed that there is
no crack nucleation during the loading, and therefore the
damage evolution is represented by the growth of micro-
crack size a, which follows a generalized Griffith crite-
rion, as

ȧ =

{
0 Gs ≤ GC

n1CR

[
1−
(

GC
GS

)n2
]

Gs > GC
(24)

where CR is the Rayleigh wave speed, GC is the critical
strain energy release rate for micro-crack growth calcu-
lated from the fracture toughness KIC, Young’s modulus
E and Poisson’s ratio v as GC = K2

IC

(
1−v2

)
/E. GS is

the applied strain energy release rate. n1 and n2 are the
parameters controlling the crack growth rate. Four pa-
rameters are used for the micro-crack extension model:
n−1 and n−2 for crack sliding, and n+

1 and n+
2 for crack

opening.

4.3 Pulverization

When the micro-crack damage density γ reaches a critical
value (usually set as 0.75) under compressive loading, the
material becomes pulverized. The bulk and shear mod-
uli for the pulverized material are set to the correspond-
ing effective bulk and shear moduli at the pulverization
point. The pulverized material does not support any ten-
sile loading and the compressive strength of the pulver-
ized material is described by the Mohr-Columb law as

Y =
{

0 ,P ≤ 0
α+βP ,P > 0

(25)

where α and β are model constants. The pressure is sim-
ply computed from the elastic volumetric strain εe

v as

P =
{

0 ,εe
v ≥ 0

−Kpεe
v εe

v < 0
(26)

4.4 Determination of Model Constants

In the Rajendran-Grove ceramic model, there are eight
material constants to describe the micro-crack behavior:
N∗

0 , a0, µ, n+
1 , n+

2 , n−1 , n−2 , and KIC. Usually, several ex-
periments such as the plate-on-plate and the bar-on-bar
impact tests are needed to determine these constants for a
specific material. Rajendran and Grove (1996) conducted
a sensitivity study of the material constants, and cali-
brated the constants for several commonly used ceramic

Table 1 : The material constants for Rajendran-Grove
model

 AD85 

Density ( 3/ cmg ) 3.42

Shear Modulus (GPa) 88.0 

Initial Porosity 10% 

Material Strength Constants  

1C  (GPa) 4.0

3C 0.029

Equation of State Constants  

1  (GPa) 150.0

2  (GPa) 150.0

3  (GPa) 150.0

0

Damage Model Parameters  
*

0N  ( 3
m ) 101.83 10

0a  ( m ) 0.58

0.72

1n 1.0

2n 0.07

1n 0.1

2n 0.07

ICK  ( mMPa ) 3.25

Pulverized Material Constants  

 (GPa) 0.1

 0.1 

materials, like SiC, B4C, TiB2, AD85, and AD995. In
the following numerical simulations, the AD85 ceramic
is used and the material constants that we employed are
listed in Table 1.

5 Numerical Examples

rigid wall 

steel

Figure 1 : Taylor’s problem: a solid cylinder impacting
a rigid surface

Two numerical examples are presented here to show the
applicability of the developed MLPG program in solv-
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(a) (b) (c)

Figure 2 : Deformed profile of the cylinder at 50 micro-seconds: (a) MLPG mixed method; (b) Finite element
model; and (c) Test

(a) (b) (c)

Figure 3 : The lower corner of the deformed profile at 50 micro-seconds: (a) MLPG mixed method; (b) Finite
element model; and (c) Test

ing contact, impact, penetration and perforation prob-
lems with large deformation. For the sake of readabil-
ity and brevity, the details of the implementation of the
MLPG contact, penetration, and perforation algorithms
are omitted here, and will be reported elsewhere.

5.1 Taylor Impact Problem

The Taylor test is often used to determine the dynamic
yield stress of a material in a state of uniaxial stress. The
Taylor impact problem can simply be described as a solid
cylinder impacting a rigid surface in the normal direction,
shown in Figure 1. In the present study, a cylinder with
a length of 12.7 cm and a radius of 76.2 cm is impact-
ing a rigid surface with an initial impact velocity of 300
m/s. The solid cylindrical rod is modeled as being elasto-
plastic, and the material is chosen as AISI 310 steel with
the following material constants: density: 8.027 g/cm3,
Young’s modulus: 199.95 GPa, Poisson’s ratio: 0.28,
yield strength: 310.26 MPa, and 1% hardening slope :
2.0 GPa.

This Taylor impact problem is simulated using the
present MLPG program. For comparison purposes, the
finite element code Dyna3D (version 2000) is also used
to analyze this problem, using the mesh generated from
the same nodal configuration. The top surface of the
cylinder reaches the lowest point at about 50 micro sec-

onds. The deformed profile of the cylinder is shown in
Fig. 2(a) using the MLPG mixed method and in Fig. 2(b)
using Dyna3D. Both codes give similar profiles. How-
ever, the MLPG method gives a straight corner while
Dyna3D gives a curved one, for this frictionless contact
impact. The corners of the deformed profiles are enlarged
in Table 1.

In analyzing this problem, the present MLPG mixed
method is used without any hour-glass control, or any
other artificial numerical treatments. In contrast, one-
point Gauss integration scheme is used in Dyna3D, along
with hour-glass control. The total CPU times for the
straightforward MLPG mixed method, and the Dyna3D
with hour-glass control and artificial viscosity, are almost
same. It clearly demonstrates the superior performance
of the present MLPG mixed method as compared to the
FEM methods.

Target Plate (AD85 Ceramic) 

Projectile 

(Tungsten) 

Figure 4 : Ballistic impact test configuration schematic
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(a) Dyna3D Results

( failed after 8 micro-seconds) 

(b) MLPG Results

(complete peneration after 19 micro-seconds) 

Figure 5 : Ballistic Impact Penetration
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Figure 6 : Remaining speed of the projectile after pene-
tration

5.2 Ballistic Impact

In this simulation, we consider a cylindrical tungsten pro-
jectile to impact with an AD85 ceramic plate at the veloc-
ity of 1500 m/s. Both the length and diameter of the pro-
jectile are 10 mm. The target ceramic plate has a thick-
ness of 5 mm and a diameter of 80 mm. Fig. 3 shows the
experimental configuration. The tungsten is modeled as
being elastoplastic, with the following material proper-
ties: density 16.98 g/cm3, Young’s modulus 299.6 GPa,
Possion’s ratio 0.21 and yield strength 1.5 GPa. The tar-
get plate is modeled using the Rajendran-Grove ceramic
damage model, which was implemented into the present
MLPG implementation, as well as in Dyna3D.

The simulation using finite element method (Dyna3D)
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Figure 7 : CPU time comparson between MLPG and
finite element apporaches

stops at 8 micro-seconds due to severe element distor-
tion, as shown in Figure 4(a). The total simulation time
with Dyna3D is over 5 hours. As pointed out by Johnson
and Robert (2003), the Lagrangian finite element algo-
rithms are not always adequate when the distortions be-
come very severe. The meshless method, which could
be used to represent severe distortions in a Lagrangian
framework, is more suitable to simulate the problems
with severe distortions like ballistic penetration.

The same problem is re-simulated by using the MLPG
method; and it is solved smoothly without any mesh dis-
tortion problems, because of the advantages of the truly
meshless method. The total solution time is 20 micro-
seconds, and it takes about 1 hour for the first 8 micro-
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seconds, and 2.5 hours to carry out the whole analysis.
The final deformation is shown in Figure 4(b), and the
fragmentation is clearly formed after the projectile pene-
trates the target plate. The steady remaining speed of the
projectile is about 1240 m/s after impact, with the veloc-
ity history chattered in Fig. 4. In addition, the MLPG
method is more stable than the FEM as a steady CPU
time is demonstrated during the whole solution time.
However, the FEM is encountering a severe mesh distor-
tion problem, and CPU time jumps up once the projectile
and plate are undergoing the large deformation right after
a few micro seconds of the solution time, shown in Fig.
5.

6 Closing Remarks

The meshless method has been a very active research
area for over ten years in the computational mechanics
field. However, due to the intrinsic complexity of the ap-
proach, most of the research is still at the academic level.
The MLPG method, as a meshless framework, provides
the flexibility to construct various meshless approaches
by different choices and combinations of the trial and test
functions; therefore, provides the possibility to simplify
the numerical procedure and lead to an efficient and sta-
ble meshless implementation.

The present development of software is based on the
MLPG mixed finite volume method for solving three-
dimensional nonlinear problems. The MLS approxima-
tions are used for both velocity and velocity-gradients in-
terpolations, independently. The adoption of the Heavy-
side function as the test function eliminates the domain
integration in the local weak form. In addition, the sup-
port size and test size are determined automatically by
the program based on the nodal density and distribution.
All of these efforts lead to a high-performance MLPG
dynamic program, which shows the potential to replace
the finite element method in some computational areas,
such as solving the high-speed impact and penetration
problems. These potentials are demonstrated through
the two numerical examples. The 3D Taylor-impact ex-
ample demonstrates that the present mixed method pos-
sesses an excellent accuracy and efficiency, as compared
to the FEM. The present method requires no special nu-
merical treatments to handle the nonlinear static and dy-
namic problems, such as the reduced integration, hour-
glass control, and so on. The ballistic-impact and per-
foration example demonstrates the ability of the MLPG

mixed method in solving high-speed problems with se-
vere distortion and fragmentation. Compared with FEM,
the MLPG is not only more stable but also more efficient.
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Meshless Local Petrov-Galerkin (MLPG) Approaches for Solving Nonlinear
Problems with Large Deformations and Rotations

Z. D. Han1, A. M. Rajendran2 and S.N. Atluri1

Abstract: A nonlinear formulation of the Meshless
Local Petrov-Galerkin (MLPG) finite-volume mixed
method is developed for the large deformation analysis
of static and dynamic problems. In the present MLPG
large deformation formulation, the velocity gradients are
interpolated independently, to avoid the time consuming
differentiations of the shape functions at all integration
points. The nodal values of velocity gradients are ex-
pressed in terms of the independently interpolated nodal
values of displacements (or velocities), by enforcing the
compatibility conditions directly at the nodal points. For
validating the present large deformation MLPG formu-
lation, two example problems are considered: 1) large
deformations and rotations of a hyper-elastic cantilever
beam, and 2) impact of an elastic-plastic solid rod (cylin-
der) on a rigid surface (often called as the Taylor impact
test). The MLPG result for the cantilever beam problem
was successfully compared with results from both analyt-
ical modeling and a commercial finite element code sim-
ulation. The final shapes of the plastically deformed rod
obtained from a well-known finite element code, and the
present MLPG code were also successfully compared.
The direct comparison of computer run times between
the finite element method (FEM) and the large defor-
mation mixed MLPG method showed that the MLPG
method was relatively more efficient than the FEM, at
least for the two example problems considered in the
present study.

keyword: Meshless Local Petrov-Galerkin approach
(MLPG), Finite Volume Methods, Mixed Methods.

1 Introduction

Accurate description and modeling of large deformations
has been a very challenging problem in computational

1 University of California, Irvine Center for Aerospace Research &
Education
5251 California Avenue, Suite 140
Irvine, CA, 92612, USA

2 Army Research Office, RTP, NC

mechanics. However, during the past three decades,
several researchers [Atluri (1980,1984), Belytshchko et
al (1984), Malkus and Hughes(1978), Oden and Pires
(1983)] have successfully developed algorithms to han-
dle large deformations in finite element analyses. It is
indeed well recognized that the FEM has certain inher-
ent drawbacks: a) labor-intensive mesh-generation, b)
shear locking, c) poor derivative solutions, and d) hour-
glass effects, e) mesh distortion under very large defor-
mations, and in f) problems of strain-localization, crack-
propagation, and material penetration. Eventhough ad-
hoc attempts are made to alleviate some of these prob-
lems, a thorough scientific basis is still necessary. Severe
localizations such as adiabatic shear banding and coales-
cence of microcracks can often limit the FEM solutions.
The so called shock propagation based FEM codes (“Hy-
drocodes”) provide numerical schemes that would allow
the calculations to proceed smoothly through removal of
highly distorted elements whose aspect ratios tend to-
wards zero from the computations. Recently, Johnson
et al (2003) proposed an “element to partcile” conver-
sion method to alleviate the problem of highly distorted
meshes in fracture and fragmentation problems. This
mixed mesh/particle method seems to provide stable and
useful solutions to several impact problems; howevere,
these types of numerical approaches tend to remain “phe-
nomenological” and limited to a class of problems. Or-
tiz and his colleagues developed FEM based fracture and
fragmentation algorithms in which cohesive zones are as-
sumed between element boundaries and cracks can be
propagated between the elements using cohesive laws
[Ortiz and Pandolfti (1999)]. They used advanced non-
linear error estimation and non smooth contact algo-
rithms to assure numerical accuracy and stability. Un-
fortunately, this advanced FEM approach seems to suffer
from mesh-influenced solutions. The problem of time
consuming mesh generation process and the need for in-
telligent mesh design make FEM based approaches more
complicated and unattractive.
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In contrast, the meshless methods have become very at-
tractive for eliminating the mesh distortion problems due
to large deformations. Some meshless methods are based
on the global weak forms, such as the smooth particle hy-
drodynamics (SPH) and the element-free Galerkin meth-
ods (EFG). They may require certain node distribution
pattern or background cells for integration, which may
be not satisfied while meshes are distorted during large
deformations.

As a general framework for developing meshless meth-
ods, the MLPG approach provides the flexibility in
choosing the local weak forms, the trial functions,
and the independent test functions for solving PDEs,
pioneered by Atluri and his colleagues [Atluri and
Zhu(1998), and Atluri (2004)]. Some distinct advantages
of the MLPG approach include: a) all weak forms are for-
mulated locally; b) various trial and test functions can be
chosen and combined together for solving one problem;
c) overlapping local sub-domains can be chosen in a way
to match problems and algorithms in any special cases; d)
it is flexible to extend and incorporate the MLPG contin-
uum methods with others, including molecular dynamics
(MD). The MLPG approach has been used to solve vari-
ous problems successfully, and has been demonstrated as
to its its suitability for computational mechanics, includ-
ing the work in fracture mechanics [Atluri, Kim and Cho
(1999)], fluid mechanics [Lin and Atluri (2001)], and 3D
elasto- statics and dynamics [Han and Atluri (2004ab)]
and so on. A very comprehensive summary has been pre-
sented in the monograph by Atluri [2004].

Most recently, a new meshless mixed finite volume
method has been presented by [Atluri, Han and Rajen-
dran (2004)], in which the strains are also interpolated
independently from the displacements. The key feature
of this new method is to interpolate the derivatives of
the primary variables independently, which makes the
MLPG method computationally more efficient. The cal-
culation of the derivatives is required at each integra-
tion point in the primal MLPG methods, which is com-
putationally costly. With the mixed method, the strain-
displacement compatibility is enforced at nodal points by
using the collocation method. In addition, it requires only
C0 continuities for the trial functions, instead of C1 con-
tinuities. Thus a smaller support size can be used and the
number of neighboring nodes is reduced dramatically, es-
pecially for 3D cases. At the same time, it still retains the
simple physical meaning as the momentum balance law

of the local sub-domains, while the accuracy of the sec-
ondary variables has been improved. The mixed method
has been applied to solve the elasto-static problems suc-
cessfully [Atluri, Han and Rajendran (2004)].

In the present study, the mixed method is extended for
the nonlinear analysis with large deformations. It is well
known that the gradients of the displacements (or veloc-
ities) are widely used for the nonlinear analysis, such as
the material constitutive models and the momentum bal-
ance law. The strain tensor is not enough to capture all
deformation information, because the spin tensor plays
an important role in the balance law, as well as the stress
update [Atluri (1980)]. Therefore, the gradients of the
velocities are chosen to be interpolated independently in
the present study, instead of the strains. Thus the local
weak forms are integrated based on the gradient interpo-
lation, as well as the material constitutive models. As
the primal variables, the velocities are chosen as the de-
grees of freedom for each node, and their gradients are
mapped back by enforcing the compatibility conditions
at nodal points through the collocation method. This
special combination also demonstrates the flexibility of
the general MLPG approach. The present MLPG mixed
method is applied to solve some example nonlinear static
and dynamic problems. An explicit algorithm is used in
the present study to simulate the high-speed impact prob-
lems. The examples demonstrate the suitability of the
MLPG mixed finite-volume method for nonlinear prob-
lems with large deformations and rotations.

The paper formulates the local weak forms for the non-
linear mechanics with large deformations in Section 2. It
also includes the numerical implementation of the MLPG
method through the mixed approach. Numerical exam-
ples are presented in Section 3, for both static and dy-
namic problems in 2D and 3D cases. Some conclusions
and discussions are given in Section 4.

2 MLPG Mixed FVM for finite strain problems

2.1 Finite strain deformation

In the present study, we use an updated Lagrangian for-
mulation. Let xi be the spatial coordinates of a material
particle in the current configuration. Let Ṡi j be the Trues-
dell stress-rate (the rate of second Piola-Kirchhoff stress
as referred to the current configuration); and let σ̇J

i j be
the Jaumann rate of Kirchhoff stress (which is J times
the Cauchy stress, where J is the ratio of volumes). It is
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known [Atluri (1980)]:

Ṡi j = σ̇J
i j −Dikσk j −σikDk j (1)

where Di j is the symmetric part of the velocity gradient.
The skew-symmetric part of the velocity gradients is de-
noted as Wi j, i.e.

Wi j =
1
2
(vi, j −v j,i) (2)

Consider a body in a 3D domain Ω, with a boundary ∂Ω,
the rate forms of the linear and angular momentum bal-
ances are [Atluri (1980)]:

(Ṡi j +τikv j,k),i + ḟ j = 0 (3)

where, in a dynamic problem, ḟ j are appropriately de-
fined in terms of the rate of change of inertia forces and
( ),i = ∂( )/∂xi; xi are current coordinates of a material
particle. In Eq. 2.2, τi j, is the Cauchy stress in the cur-
rent configuration.

Consistent theories of combined isotropic/kinematic
hardening finite strain plasticity that are capable of mod-
eling the available test data (at finite strain) are fully dis-
cussed in Im and Atluri (1984). Especially, in the case of
kinematic hardening plasticity at finite strains, it is desir-
able [see Im and Atluri (1987), and the references cited
therein] to introduce the so-called plastic spin, denoted
by Wp. As seen in Im and Atluri (1987) a combined
isotropic/kinematic hardening plasticity may be charac-
terized by the following evolution equations:

Dp
i j = fi j(σ

′
i j,Di j,W

p
i j , · · ·) (4)

W p
i j = gi j(σ

′
i j, ri j, · · ·) (5)

rJ
i j = hi j(D

p
i j,W

p
i j , · · ·) (6)

and

σ̇J
i j = ki j(D

p
i j,W

p
i j , · · ·) (7)

Here, ri j is the back-stress; ṙJ
i j the Jaumann rate of the

back-stress; Dp
i j the plastic part of the velocity strain Di j;

and σ′
i j is the deviator of the Kirchhoff stress.

Integral representations for the combined
isotropic/kinematic hardening plasticity theories of
the above type have been discussed in Im and Atluri

(1987b). It is noted here that ri j = 0; W p
i j = 0 in the case

of isotropic hardening. The evolution equations for σ̇J
i j

is given by:

σ̇J
i j ≡ σ̇i j −Wikσk j +σikWk j

= Ei jkl(Dkl −Dp
kl)−W p

ik σk j +σikW
p
k j (8)

2.2 Local weak form with the large deformations

In the MLPG approaches, one may write a weak form
over a local sub-domain Ωs, which may have an arbitrary
shape, and contain the a point x in question. A general-
ized local weak form of the differential equation in Eq.
2.2, over a local sub-domain Ωs, can be written as:
Z

Ωs

[(Ṡi j +τikv j,k),i + ḟ j]wjdΩ = 0 (9)

where wj are the test functions.

By applying the divergence theorem, Eq. (9) may be
rewritten in a symmetric weak form as:
Z

∂Ωs

(Ṡi j +τikv j,k)niwjdΓ

−
Z

Ωs

[(Ṡi j +τikv j,k)wj,i − ḟ jw j]dΩ = 0 (10)

One may define the rate of tractions ṫ j as:

ṫ j = (Ṡi j +τikv j,k)ni (11)

where ni are components of a unit outward normal to the
boundary of the local subdomain Ωs, in its current config-
uration. Thus one may rewrite the local symmetric weak
form as
Z

Ls

ṫiwidΓ+
Z

Γsu

ṫiwidΓ+
Z

Γst

ṫ iwidΓ

−
Z

Ωs

[(Ṡi j +τikv j,k)wj,i − ḟiwi)dΩ = 0 (12)

where Γsu is a part of the boundary ∂Ωs of Ωs, over which
the essential boundary conditions are specified. In gen-
eral, ∂Ωs = Γs ∪ Ls, with Γs being a part of the local
boundary located on the global boundary, and Ls is the
other part of the local boundary which is inside the solu-
tion domain. Γsu = Γs∩Γu is the intersection between the
local boundary ∂Ωs and the global displacement bound-
ary Γu; Γst = Γs ∩Γt is a part of the boundary over which
the natural boundary conditions are specified.
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One may use the Heaviside function as the test function
in the local symmetric weak form in Eq. (12), and obtain,

−
Z

Ls

ṫidΓ−
Z

Γsu

ṫidΓ =
Z

Γst

ṫ idΓ+
Z

Ωs

ḟidΩ (13)

Eq. 2.3 has the physical meaning that it represents the
balance law of the local sub-domain Ωs, as conventional
finite volume methods.

2.3 Meshless interpolation for the mixed method

The MLS method of interpolation is generally considered
to be one of the best schemes to interpolate random data
with a reasonable accuracy, because of its completeness,
robustness and continuity. With the MLS, the distribution
of a function u in Ωs can be approximated, over a number
of scattered local points {xi}, (i = 1,2, ...,n), as,

u(x) = pT (x)a(x) ∀x ∈ Ωs (14)

where pT (x) = [p1(x), p2(x), ... , pm(x)] is a monomial
basis of order m; and a(x) is a vector containing coef-
ficients, which are functions of the global Cartesian co-
ordinates [x1,x2,x3], depending on the monomial basis.
They are determined by minimizing a weighted discrete
L2 norm, defined, as:

J(x) =
m

∑
i=1

wi(x)[pT (xi)a(x)− ûi]2

≡ [P ·a(x)− û]T W[P ·a(x)− û] (15)

where wi(x) are the weight functions and ûiare the ficti-
tious nodal values.

One may obtain the shape function as,

u(x) = pT (x)A−1(x)B(x)û≡ ΦΦΦT (x)û ∀x ∈ ∂Ωx (16)

where matrices A(x) and B(x) are defined by

A(x) = PT WP B(x) = PT W ∀x ∈ ∂Ωx (17)

The weight function in Eq. (15) defines the range of in-
fluence of node I. Normally it has a compact support. A
fourth order spline weight function is used in the present
study.

From the definition of the rate of tractions in Eq. (14), the
integrals in the local weak form in Eq. 2.3 are based on
the derivatives of the shape functions given in Eq. (16).

It is well known that the calculation of the derivatives of
the shape functions is computationally costly. One may
following the original idea reported by [Atluri, Han, and
Rajendran (2004)] and interpolate the gradients of the ve-
locities indecently. Thus no derivatives are required to
perform the local weak form integration. One may use
the same shape functions in Eq. (16) for the gradient in-
terpolation, as

vi, j(x) =
N

∑
K=1

Φ(K)(x)v(K)
i, j (18)

where v
(K)
i, j are the gradients of the velocities at node K,

which can be determined at the nods by enforcing the
compatibility condition through the standard collocation
method. The interpolation of the velocities can be also
written from the same shape functions, as

vi(x) =
N

∑
J=1

Φ(J)(x)v(J)
i (19)

Thereafter, the compatibility condition is enforced at
node K by differentiating the velocity fields in Eq. (19),
as

vi, j(x(I)) =
∂vi

∂x j
(x(I)) (20)

By interpolating the gradients of the velocities, as one
of the key features of the mixed method, the integrals
in the local weak form involve no derivatives, i.e. the
differentiation operations of the shape functions. In ad-
dition, most nonlinear constitute equations are based on
the gradients, and the stress measures are transformed
through the gradients. By extending the mixed method
by Atluri, Han, and Rajendran (2004)[wherein strains
and displacements were independently interpolated], the
present mixed method[wherein the displacement gradi-
ents and displacements are independently interpolated]
still holds the same advantages: a) the efficiency of the
present method is improved over the traditional MLPG
[primal] displacement methods; b) the requirement of the
completeness and continuity of the shape functions is re-
duced by one-order, because the gradients are interpo-
lated independently. Thus, lower-order polynomial terms
can be used in the meshless approximations, and leads to
a smaller nodal influence size to speed up the calculation
of the shape functions.
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2.4 Small and finite strain elasto-plasticity for velocity
gradients

The analyses of small and finite strain elastoplasticity are
presented, along with the detailed numerical implemen-
tations for the numerical evaluations of singular integrals.
We consider a general type of elasto-plastic constitutive
model, which includes the isotropic, the kinematic and
the combined isotropic/kinematic hardening behavior of
the solid at large strains. It is known that in a kinematic
hardening large strain plasticity model, if the evolution
equations for the Jaumann rates of the Kirchhoff stress
and of the back-stress, respectively, are simply taken to
be linear functions of the plastic component of the veloc-
ity strain, certain anomalous consequences, such as an
oscillatory stress response of the material in finite sim-
ple shear, may result [Atluri (1984), Reed and Atluri
(1985)]. More general evolution equations, especially to
account for the noncoaxiality of the Cauchy stress and
the Cauchy-like back-stress in shear and nonproportional
loadings, have been attempted by Atluri (1984) and by
Reed and Atluri (1985) to suppress the physically un-
acceptable oscillatory stress responses. Although these
methods based on formal continuum mechanics were
quite successful for the simple shear case, the physics
and micromechanics of finite plastic flow indicate that a
more consistent large strain elastoplastic constitutive law
should involve an evolution equation for the plastic com-
ponent of the spin tensor. Such an elastic-plastic con-
stitutive model has been developed, for instance, in Im
and Atluri (1987), which is the finite strain version of the
endochronic constitutive model of Watanabe and Atluri
(1986). Here, the concept of a material director triad is
introduced and the relaxed intermediate configuration is
chosen to be isoclinic. The plastic spin tensor is defined
through internal time. Such an endochronic constitutive
model (for large strain elastoplasticity) employed here,
can be summarized as follows.

Let Ni jbe the normal to the yield surface in the deviatoric
Kirchhoff stress space. When the stress is on the yield
surface and Ni jDi j ≥ 0, the process is a plastic process.

Ni j = (τ
′
i j − ri j)/

∥∥∥τ
′
i j − ri j

∥∥∥ (21)

ζ = Di jNi j/C (22)

Dp
i j = Ni jζ (23)

W p
i j = Ωi jζ (24)

Ωi j = {m1(rikτ′
k j−τ′

ikrk j)
τ2

y f 2(ζ)
,

m2(rikrklτ
′
l j −τ′

ikrklrl j)
τ3

y f 3(ζ)
,

m3(rikτ′
klτ

′
l j −τ′

ikτ′
klrl j)

τ3
y f 3(ζ)

} (25)

(τ
′
i j − ri j)(τ

′
i j − ri j) = τy f 2(ζ) (26)

τ̇J
i j = λ(Dkk)δi j +2µ(Di j −Dp

i j)−W p
ik τk j +τikW

p
k j (27)

ṙJ
i j = 2µρ1D

p
i j −

αri j(D
p
klD

p
kl)

1/2

f (ζ)
−W p

ik rk j + rikW
p
k j (28)

where, ri j is the back-stress and τ′
i j is the deviatoric part

of Kirchhoff stress τi j. f (ζ) and ri j represent the expan-
sion and translation of von Mises type yield surface. Dp

i j

and W p
i j are the rate of plastic strain and the plastic spin,

respectively. ζ represents the internal time variable. It is
seen that Ωi j accounts for the noncoaxiality of the ten-
sors τ′

i j and ri j. The coefficient C is defined as a kernel
function. The reader is referred to Im and Atluri (1987)
for further details of the constitutive model.

2.5 Numerical quadrature

In the present study, the integrations are performed nu-
merically by using the conventional Gauss quadrature
scheme. To improve the performance of the numerical in-
tegration, the local subdomain (i.e. a circle for 2D prob-
lems) is divided into arcs, as in Atluri, Han, and Rajen-
dran (2004). For 3D problems, the local subdomain (i.e.
a sphere) is partitioned by triangles for the surface inte-
gration [Han and Atluri (2004a)]. The same algorithms
are re-used in the present study.

3 Numerical Experiments

Several nonlinear problems in 2D and 3D are solved, to
illustrate the effectiveness of the present method. The
first two examples studied are 2D static problems, such as
the patch tests, including (i) a tensile bar, (ii) a cantilever
beam under shear load. The third example is the Taylor’s
impact problem, for explicit dynamics.



6 Copyright c© 2005 Tech Science Press CMES, vol.10, no.1, pp.1-12, 2005

3.1 A tensile bar

A tensile bar is analyzed as the first example. The rect-
angular bar is subjected to tensile deformation (in plane
strain) with shear free end conditions, as shown in Figure
1. It has a length of 1.0m and a width of 0.2m. The ma-
terial behaviour is taken to be neo-Hookean hyperelastic.
The strain energy is split into deviatoric and volumetric
parts to account for the incompressibility condition as:

Figure 1 : A bar under uniform tension

W0 = Wdeviatoric+Wvolumetric

Wdeviatoric = C10(I1 −3)

Wvolumetric =
9K
2

(J
1
3 −1)2 (29)

where

I1 = I1I
− 1

3
3 , I1 = tr(C)

I2 = I2I
− 2

3
3 , I2 =

1
2
(C : C− I2

1 )

I3 = det(C)

J = sqrt(I3)

and

C = FT ·Fis the right Cauchy-Green deformation tensor.

In the present study, the bulk modulus is taken as 2×
107 MPa and the shear modulus as 7.5× 106 MPa. The
bar is modeled with 100 nodes as 25 nodes in 4 rows. The
linear displacement fields are expected in the uniform de-
formations. The polynomials with first order complete-
ness are used for the MLS approximation in the present
study. Therefore, the present MLPG mixed method is ex-
pected to provide an accurate solution, in the patch test.
The original MLPG mixed method passed this patch test
for linear elastic problems [Atluri, Han and Rajendran
(2004)].

The bar is stretched to 7 times of its original length. The
numerical results obtained by using the present MLPG
method are compared with the analytical solution and the
FEM results, shown in Figure 2. A very good agreement
is observed between these solutions.
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Figure 2 : Tensile stress of a bar under uniform tension

3.2 Cantilever beam

The performance of the present MLPG formulations is
also evaluated, using the cantilever beam problem under
a transverse load, shown in Figure 3. The beam is con-
sidered to undergo large deformations, including large
strains and rotations. The linear elastic solution is given
in Timoshenko and Goodier (1970), as

P

L

2c 
x

y

Figure 3 : A cantilever beam with an end load

ux = − Py

6EI

[
3x(2L−x)+(2+υ)(y2−c2)

]

uy =
P

6EI

[
x2(3L−x)+3υ(L−x)y2 +(4+5υ)c2x

]
(30)
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where the moment of inertia I the beam is given as,

I =
c3

3
(31)

and

E =
{

E
E/(1−υ)2

υ =
{

υ for plane stress
υ/(1−υ) for plane strain

(32)

The corresponding stresses are

σx = −P
I
(L−x)y

σy = 0

σxy = − P
2I

(y2 −c2) (33)

The problem is solved for the plane stain case with L =
1.0, and c = 0.1. The same neo-Hookean hyperelastic
material is taken for the beam as it in the first example.
This problem has been used as an example by Atluri, Han
and Rajendran (2004) in the linear elasto-static case. The
effects of the MLS support and test sizes have also been
investigated. In the present study, we revisit this example
with for large deformations. Based on the numerical re-
sults by Atluri, Han and Rajendran (2004), a regular uni-
form nodal configuration with nodal distance, d, of 0.5 is
used. The number of nodes is 105. The first order MLS is
used for the meshless approximation, with a support size
of 1.15d and a test size of 0.6d. For comparison pur-
poses, a corresponding Quad-4 elements-based FE mesh
has also been created, from the same nodes, for the FEM
analysis with the commercial code MARC, .

A total transverse force of 7.58×105N is applied at the
free end of the beam. There are 10 constant increment
steps to solve this problem by using the present MLPG
mixed method. The final vertical displacement at the
free end reaches 0.83, which is more than 4 times of the
height of the beam. The final deformed beam is shown in
Figure 5a. The problem is also solved by using MARC,
as a full nonlinear analysis. The FE results give the same
deformation shown in Figure 5b. The vertical displace-
ments are shown in Figure 6. It can be seen that the nu-
merical results agree well with those obtained by using
the FE code.

Figure 4 : Nodal configuration for a cantilever beam with
105 nodes

(a) The present MLPG mixed method 

(b) FEM 

Figure 5 : Vertical displacement field of the deformed
cantilever beam under a transverse load.

The vertical stress distribution obtained by using the
present MLPG method is shown in Figure 7a, and that
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Figure 6 : Vertical displacements of a cantilever beam
under a transverse load, along the lower and upper edges
of the beam.

by using the FE method in Figure 7b. Both methods
give the similar distributions. However, there is some
difference at the corners of two ends of the beam. The
stresses in the vertical direction at the lower and upper
free edges are shown in Figure 8. It shows that the MLPG
mixed method gives higher stresses at the fixed end, be-
cause of the stress concentration due to the fixed bound-
ary conditions. At the free end, the MLPG mixed method
gives the stress values that tend to zero as the parabolic
transverse load is applied. Such numerical results con-
firm that the MLPG mixed method gives more accurate
strain/stress (i.e. the derivative fields) results to enforce
the balance laws locally. It should be pointed out that the
current MLPG mixed method does not require any spe-
cial numerical treatments to avoid any shear locking. It
is straightforward to extend this method for other PDEs.

3.3 Taylor’s problem: high speed impact

The Taylor test is often used to determine the dynamic
yield stress of a material in a state of uniaxial stress. In
this test, a right circular cylinder is impacted against a
rigid wall. From measurements of the initial and final di-
mensions of the cylinder as well as the velocity of impact,
the dynamic yield stress is calculated from an analytical
relationship derived by Taylor (1948). However during
1990s, the Taylor test configuration has been routinely
used to validate constitutive models developed for appli-

(a) The present MLPG mixed method 

(b) FEM 

Figure 7 : Stress distribution in the vertical direction of
a cantilever beam under a transverse load code.

cations involving high strain rates. The high strain rate
model parameters are often determined and calibrated
using stress-strain curve data obtained from a number
of conventional dynamic tests. Nicholas and Rajendran
(1990) described these various dynamic tests and sev-
eral high starin rate constitutive models. Most of the test
configurations involve small strains and idealized stress /
strain states, such as uni-axial stress and one-dimensional
strain. The idea behind the Taylor test validation effort
is to compare the high-speed-camera- measured time-
resolved profiles (shapes or contours) of the plastically
deforming cylinder with the profiles obtained from com-
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Figure 8 : Vertical stress of a cantilever beam under a
transverse load, along the lower and upper edges of the
beam.

L

R

Figure 9 : Taylor’s problem: a solid cylinder impacting
a rigid surface

Figure 10 : A nodal configuration for the Taylor’s prob-
lem: 3872 nodes.

putational simulations. The loading conditions in Tay-
lor tests involve very large deformation (>100 percent),
multi-axial stress/strain state, high temperature, and very
high non-uniform strain rates.

The Taylor impact problem can simply be described as
a solid cylinder impacting a rigid surface in the normal
direction, shown in Figure 9. In the present study, a
cylinder with a length of 12.7cm (0.5 in) and a radius of
76.2cm (3 in) is impacting a rigid surface with an ini-
tial impact velocity of 300m/s. It is assumed that there
is no friction between the contact surfaces. The ma-
terial is chosen as the isotropic-hardening elasto-plastic
metal. The material properties are chosen as: the Young’s
modulus E = 199.948GPa, the Poisson’s ratio υ = 0.28,
the yield strength σs = 310.26MPa, and the harden-
ing tangent modulus H = E/100 = 1.99948GPa for the
nearly perfect plasticity. The cylinder is modeled with
a nodal configuration with 3872 nodes, shown in Figure
10. There is an initial gap of 0.1mm between the bottom
of the cylinder and rigid surface.
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(a) MLPG Mixed Method 

(b) Dyna3D 

Figure 11 : Vertical displacement distributionof the Tay-
lor’s problem while starting contact (at t = 2 micro sec-
onds)

This Taylor impact problem is simulated using the
present MLPG finite-volume mixed method, with a dy-
namic explicit algorithm for the direct time integration
[Han and Atluri (2004b)]. The vertical displacements are
shown in Figure 11a at 2 micro seconds, as the shock
wave is propagating from the bottom surface towards the
top surface of the cylinder. For comparison purposes,
the LLNL Dyna3D (2000) is also used to analyze this
problem, using the mesh generated from the same nodal

(a) MLPG Mixed Method 

(b) Dyna3D 

Figure 12 : Deformed profile of the cylinder (Taylor’s
problem) at t = 50 micro seconds

configuration. Comparing Figs 11a and 11b, the wave
propagation patterns from the MLPG and the Dyna3D
simulations are quite similar.

The top surface of the cylinder reaches the lowest point
at about 50 micro seconds. The deformed profile of
the cylinder is shown in Figure 12a by using the MLPG
mixed method, and in Figure 12b by using Dyna3D. Both
codes give similar profiles. However, the MLPG method
gives a straight corner while Dyna3D gives a curved one,
for this frictionless contact impact. The corners of the de-
formed profiles are enlarged in Figure 13. After reaching
the lowest point, the cylinder starts to bounce back. The
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(a) the MLPG Mixed Method  (b) Dyna3D 

Figure 13 : The lower corner of the deformed profile of
the cylinder (Taylor’s problem) at t = 50 micro seconds

final deformed profiles are shown in Figure 14 at the time
of 100 micro seconds. The cylinder is entirely released
from contact, and bounces back at a constant velocity, in
both the simulations.

In analyzing this problem, the present MLPG mixed
method is used without any hour-glass control, or any
other artificial numerical treatments. In contrast, one-
point Gauss integration scheme is used in Dyna3D with
hour-glass control. The total CPU times for the straight-
forward MLPG mixed method, and the Dyna3D with
hour-glass control and artificial viscosity, are almost
same. It clearly demonstrates the superior performance
of the present MLPG mixed method as compared to the
FEM methods.

4 Closure

The mixed finite volume method (FVM) is developed
for nonlinear problems, through the general MLPG ap-
proach. The MLS approximations are used for both
velocity and velocity-gradients interpolations, indepen-
dently. By enforcing the compatibility conditions only
at nodal points, the present mixed method leads to an
efficient quadrature scheme for performing the integrals
in the local weak forms. The numerical examples in
2D statics show the suitability of the present MLPG
mixed method for nonlinear problems with extremely
large deformations and rotations. For the high-speed im-
pact problems, the 3D Taylor-impact example demon-

(a) the MLPG mixed method 

(b) Dyna3D 

Figure 14 : Spring back of the cylinder (Taylor’s prob-
lem) after impact at t = 50 micro seconds

strates that the present mixed method possesses an ex-
cellent accuracy and efficiency, as compared to the FEM.
The present method requires no special numerical treat-
ments to handle the nonlinear static and dynamic prob-
lems, such as the reduced integration, hour-glass con-
trol, and so on. The present method is based on the local
weak form and the nodal forces are assembled locally. It
makes the present method suitable for parallel computa-
tion. With these distinct advantages, it can be concluded
that the present MLPG mixed method is one of the most
promising methods for the nonlinear problems with high-
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speed large deformations.
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The MLPG Mixed Collocation Method for Material Orientation and
Topology Optimization of Anisotropic Solids and Structures

Shu Li1 and S. N. Atluri2

Abstract: In this paper, a method based on a
combination of an optimization of directions of
orthotropy, along with topology optimization, is
applied to continuum orthotropic solids with the
objective of minimizing their compliance. The
spatial discretization algorithm is the so called
Meshless Local Petrov-Galerkin (MLPG) “mixed
collocation” method for the design domain, and
the material-orthotropy orientation angles and the
nodal volume fractions are used as the design
variables in material optimization and topology
optimization, respectively. Filtering after each it-
eration diminishes the checkerboard effect in the
topology optimization problem. The example re-
sults are provided to illustrate the effects of the
orthotropic material characteristics in structural
topology-optimization.

Keyword: orthotropy, material-axes orientation
optimization, topology optimization, meshless
method, MLPG, collocation, mixed method

1 Introduction

The use of anisotropic materials in structural de-
sign provides superior physical and mechanical
properties in a wide range of engineering ap-
plications such as complex aircraft: low-mass
army ground-vehicles, simple sails: high speed
and light rotating disks [Spalatelu-Lazar, Léné
and Turbé(2008), Khoshnood and Jalali (2008)].
Composite materials are used to design a mate-
rial with properties which are impossible to be
achieved by isotropic materials. It is well known
that the characteristics and properties of compos-
ite structures made of orthotropic materials are di-

1 Department of Aircraft Engineering, Beijing University of
Aeronautics and Astronautics, Beijing 100083, P.R. China

2 Center for Aerospace Research & Education, University
of California, Irvine, USA

rectly related to the orientation of material princi-
pal axes. For complicated engineering structures
with many design parameters, simple structural
design is not sufficient for the desired structural
performance. Topology optimization is becom-
ing a potentially important tool for structural de-
sign. By adding material where it is required for
desired performance, and by removing material
where it is redundant, while keeping the volume
of the structure constant, topology optimization
methods transform the structural design problem
into a material distribution optimization problem.

The conventional topology optimization of a
structure proceeds in a sequential manner, and
it simultaneously solves the equilibrium equa-
tions and optimizes the structure subjected to cer-
tain objectives and constraints [Norato, Bend-
søe, Haber and Tortorelli (2007), Vemaganti and
Lawrence (2005), Cisilino(2006), Wang, Lim,
Khoo and Wang (2007), Zhou and Wang (2006)].
Simpler, convenient and efficient numerical meth-
ods are also mandatory, because of the inten-
sive computation involved in topology optimiza-
tion. With the potential benefits of the mesh-
less methods, especially research in [Atluri and
Zhu(1998), Atluri and Shen(2002a, 2002b), and
Atluri(2004)] shows that the MLPG method is
becoming the most effective numerical-analytical
method for optimizing structures. In this paper,
the equilibrium equations of the topology opti-
mization problem are solved by a Meshless Lo-
cal Petrov-Galerkin (MLPG) “mixed collocation”
method which was presented by Atluri, Liu, and
Han (2006). This meshless method avoids any nu-
merical integration either over a local domain or
over the local boundary and has inherent advan-
tages such as the computational efficiency and the
ease of implementation.

In the present work, we extend our previous work
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[Li and Atluri (2008)] to perform topology op-
timization of orthotropic composite structures.
This work focuses on a combination of the opti-
mization of material-axes orientation, along with
topology optimization, of orthotropic continuum
solids. We deal with this problem in two stages.
The first stage is based on ideas from optimiza-
tion of orientation angles of an orthotropic ma-
terial. The orientations of orthotropic materials
are important design parameters, because they can
change the structural mechanical behavior. In the
“orientation-optimization” of an orthotropic ma-
terial, one of the early works is due to Pedersen
(1989). The objective of the optimization is to
treat the compliance minimization as a measure
of the material stiffness. To this end the compli-
ance of the structure is evaluated using the Mesh-
less Local Petrov-Galerkin (MLPG) “mixed col-
location” method, the one already used by the au-
thors for isotropic plane structures [Li and Atluri
(2008)]. Finally, a topology optimization of the
orthotropic composite structure, with the opti-
mized material orientations, is performed. The
methods can be easily extended to thick-section
composite laminates, wherein each lamina can be
modeled as an orthotropic material. The meth-
ods that are developed in the present paper, and
in Li and Atluri (2008) are germane to our over-
all goal of implementing multi-scale material and
topology optimization strategies for maximizing
the fracture and damage resistance of light weight
structures subject to intense dynamic loading.

The outline of this paper is as follows: the MLPG
mixed collocation method is introduced in Sec-
tion 2, where the moving least squares (MLS)
approximation is briefly reviewed and the equi-
librium equations for an anisotropic solid are
discussed. An “optimal orientation-of-material-
angles” problem of an anisotropic material is de-
fined in Section 3. Section 4 gives the formu-
lation for the structural topology optimization, a
scheme for the Lagrange method and the filtering
principle. Several examples are presented to illus-
trate the characteristics of topology optimization
for orthotropic materials, in section 5. Finally, we
summarize, discuss, and generalize the results of
the paper in section 6.

2 MLPG Mixed Collocation Method

2.1 The moving least squares (MLS) approxi-
mation

The moving least squares (MLS) approximation
is often chosen as the interpolation function in
a meshless approximation of the trial function.
The MLPG Mixed Collocation Method adopts the
MLS interpolation [while other functions such as
the Radial Basis Functions, MQ, etc. can also
equally well be used] to approximate a function
u(x) over a number of nodes randomly spread
within the domain of influence. The approxi-
mated function u(x) can be written as [Atluri
(2004)]

u(x) = pT (x)a(x) (1)

where pT (x) is a monomial basis which can
be expressed as pT (x) = [1, x1, x2] for two-
dimensional problems and pT (x) = [1, x1, x2, x3]
for three dimensional problems, respectively.
a(x) is a vector of undetermined coefficients,
which can be obtained by minimizing the
weighted discrete L2 norm, defined as

J(x) =
m

∑
I=1

wI(x)
[
pT (xI)a(x)− ûI]2 (2)

where {xI} : (I = 1,2, . . .,m) are scattered local
points (nodes) to approximate the function u(x),
wI are the weight functions and ûI are the ficti-
tious nodal values. After the coefficient vector
a(x) is obtained, we substitute it into Eq. (1). The
function u(x) can be approximated by these ficti-
tious nodal values, as

u(x) =
m

∑
I=1

ΨI(x)ûI (3)

where ûI is the virtual nodal value at node I, and
ΨI(x) is the shape function. The detailed formu-
lations and discussions for the MLS interpolation,
using the true nodal values can be found in Atluri
(2004).

Generally speaking, the MLS shape function does
not have the Dirac Delta property, namely

uI ≡ u(xI) =
m

∑
J=1

ΨJ (x) ûI �= ûI (4)
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However, with the mapping relationship between
the virtual and true nodal values [Eq. (4)], it is
straightforward to establish the trial functions in
the true nodal-values space as

u(x) =
m

∑
I=1

ΦI(x)uI (5)

2.2 Equilibrium equations

We consider a linear elastic body Ω undergo-
ing infinitesimal deformations. The equilibrium
equation can be expressed as

∇ ·σσσ + f = 0 (6)

subject to the boundary conditions:

u = u on Γu

t = n ·σσσ = t on Γt
(7)

In which σσσ is the stress tensor, ∇ is the gradient
vector, f is the body force vector; u is the displace-
ment vector, t is the traction vector, and n is the
outward unit normal to the boundary Γ.

Within the general MLPG framework
[Atluri(2004)], one may choose the Dirac
Delta function as the test function for the un-
symmetric local weak form, and apply it to each
nodal point. The momentum balance equation is
enforced at the nodal points, as

[∇ ·σσσ ]
(
xI)+ f

(
xI)= 0 (8)

where
{

xI
}

(I = 1,2, . . .,N) are the distributed
nodes, and N is the number of total distributed
nodes in the solution domain. In the present
mixed scheme, we interpolate the displacement
vector u(x) and the stress tensor σσσ (x) indepen-
dently, using the same shape functions obtained
from the MLS approximation [Eq. (3)], the dis-
placement field u(x) and the stress field σσσ(x) can
be represented in matrix form

u(x) =
m

∑
J=1

ΦΦΦJ (x)uJ (9)

σσσ(x) =
m

∑
J=1

ΦΦΦJ (x)σσσ J (10)

Here, uJ and σσσ J are the nodal displacement vec-
tor and stress vector [note that the stress tensor is
now symbolically re-written as a stress-vector] at
node J, respectively. In the case of the orthotropic
linear elastic problem, the plane orthotropic con-
stitutive relation is described by four independent
material parameters and by a specified direction
(Q11 > Q22) as

⎡
⎣ σ1

σ2

σ12

⎤
⎦=

⎡
⎣Q11 Q12 0

Q12 Q22 0
0 0 Q66

⎤
⎦
⎡
⎣ ε1

ε2

ε12

⎤
⎦

Q11 =
E1

1−ν12ν21
, Q22 =

E2

1−ν12ν21
,

Q66 = G12, Q12 = ν12Q11 = ν21Q22

With E1, E2 the Young’s modulus, ν12, ν21 the
Poisson’s ratio.

x 

y

θ

1
2 

Figure 1: The orientation angle

Using a matrix expression for the rotated elastic
coefficients, we can define

⎡
⎣ σ1

σ2

σ12

⎤
⎦= T

⎡
⎣σx

σy

σxy

⎤
⎦

where the matrix T stands for the rotation matrix,
θ is the orientation angle of the materials’ princi-
ple direction of orthotropy. The rotation matrix T
can be given by

T =

⎡
⎣ m2 n2 2mn

n2 m2 −2mn
−mn mn

(
m2 −n2

)
⎤
⎦
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and

T−1 =

⎡
⎣m2 n2 −2mn

n2 m2 2mn
mn −mn

(
m2−n2

)
⎤
⎦

m = cosθ , n = sinθ

The relation between the stress vector σσσ and strain
vector the εεε can be written as

σσσ = Q ·εεε (11)

Where

Q = T−1 ·Q · (T−1)T

εεε = L∗ ·u (12)

where, L∗ a differential operator, for the present
2D problem.

Upon substituting the stress interpolation Eq. (10)
into Eq. (8), we have

m

∑
J=1

∇ ·ΦΦΦJ (xI) ·σσσ J + f
(
xI)= 0;

for I = 1,2, . . .,N (13)

It clearly shows that there are no second deriva-
tives of the shape functions for the displacements
involved in the system equations, due to the inde-
pendent interpolation of the stress variables. It is
well known that in the meshless approximation,
specifically the MLS, usually results in a very
complex form of the second derivatives. The Eq.
(13) has less number of equations than the number
of the independent stress variables, because the
nodal stress variables are more than the displace-
ment ones. Therefore, we need to establish some
more equations in addition to Eq. (11) through the
stress displacement relation. The standard collo-
cation method may be applied to enforce the stress
displacement relation at each nodal point. For lin-
ear elasticity problems, this relation can be writ-
ten as

σσσ
(
xI)Q ·εεε (xI)= Q ·L∗ ·u(xI) (14)

After substituting the displacement interpolation
Eq. (9) into Eq. (14), we have

σσσ J =
m

∑
J=1

QBJ (xI)uJ (15)

where

BJ
(
xI
)

=

⎡
⎣ΦJ

,x

(
xI
)

0
0 ΦJ

,y

(
xI
)

ΦJ
,y

(
xI
)

ΦJ
,x

(
xI
)
⎤
⎦ (16)

σσσ J =
[
σ J

x σ J
y τJ

xy

]T
uJ =

[
uJ

x uJ
y

]T
Eq. (13) and Eq. (14) can be rewritten in the
forms as follows, respectively:

KS ·σσσ = fb (17)

σσσ = T ·u (18)

in which fb is the body force vector.

We set BIJ = BJ
(
xI
)
, thus

KS =

⎡
⎢⎢⎢⎣

BT
11 BT

12 · · · BT
1n

BT
21 BT

22 · · · BT
2n

...
...

...
...

BT
n1 BT

n1 · · · BT
nn

⎤
⎥⎥⎥⎦

T = Q ·

⎡
⎢⎢⎢⎣

B11 B12 · · · B1n

B21 B22 · · · B2n
...

...
...

...
Bn1 Bn1 · · · Bnn

⎤
⎥⎥⎥⎦

and

σσσ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

σσσ1

σσσ2

...
σσσ J

...
σσσN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

u =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1

u2

...
uJ

...
uN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Let

K = KS ·T (19)

which yields the well known formulation of equi-
librium equation

Ku = fb (20)

Where

KIJ =
m

∑
K=1

BT
IKQBKJ (21)
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It should be noted that BIK = BK
(
xI
)

and BKJ =
BJ
(
xK
)
. We can write Eq.(21) as

KIJ =
m

∑
K=1

(
BK (xI))T

Q̂BJ (xK) (22)

Obviously, KIJ is not a symmetric matrix.

2.3 Boundary Conditions

The traction boundary conditions are enforced at
each of the traction boundary nodes K, as:

nK ·σσσK = tK for K = 1, . . .,S (23)

where S is the number of total traction boundary
nodes, the matrix nK is the transformation matrix
between the coordinates, as

nK =
[
nK

x 0 nK
y

0 nK
y nK

x

]

and

σσσK =
[
σK

x σK
y τK

xy

]T
, tK =

[
tK
x tK

y

]T
Assuming σσσ1 and σσσ2 represent the known and un-
known stress vectors, respectively. Hence Eq.(20)
can be written as

K1 ·σσσ 1 +K2 ·σσσ2 = fb (24)

where

σσσ1 = T1 ·u (25)

σσσ2 = T2 ·u (26)

Premultiplying Eq. (23) by the penalty number α
and the transpose of the transformation matrix n,
we obtain:

αnT ·n ·σσσ 1 = αnT · t (27)

where

n =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

n1 0
n2

. . .
nK

. . .
0 nS

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

σσσ1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

σσσ 1

σσσ 2

...
σσσK

...
σσσ S

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

t =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t1

t2

...

tK

...
tS

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

It is easy to obtain

σσσ1 +αnT ·n ·σσσ1 = T1 ·u+αnT · t (28)

and

σσσ1 =
(
I +αnT ·n)−1 (

T1 ·u+αnT · t) (29)

where I is unit matrix.

Let

R =
(
I +αnT ·n)−1

(30)

then

σσσ1 = R ·T ·1 u+αR ·nT · t (31)

By substituting Eq. (31) into Eq.(24), we can ob-
tain a discretized system which is expressed as

K ·u = f (32)

where

K = K1 ·R ·T1 +K2 ·T2

f = fb −αK1 ·R ·nT · t (33)

3 Optimal orientation of material axes

We consider the problem of optimal orientation
of material axes in two different problems. In the
first problem, the design domain consists of an or-
thotropic material with a fixed orientation angle.
In the second problem, the orientation angles are
functions of the spatial coordinates in the design
domain. The orientation optimization problem is
to search for the minimization of total compli-
ance of orthotropic material structures. The de-
sign variable is the orientation of material axes.
The mean compliance is the function to be mini-
mized with respect to the variations of the orien-
tation angles. Here, ‘compliance’ is defined as the
product of the external loads and the correspond-
ing displacements.
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3.1 The fixed orientation angle case

According to Eq.(32), the objective function (the
mean compliance of a structure) is formulated as
follows:

C (θ ) = fT ·u (34)

where u is the global displacement vector, and f
is the prescribed force vector. Considering C (θ )
as a scalar function, the above expression can also
be written, for linear response, as:

C (θ ) = uT KT u = uT Ku (35)

If we set KT u = f′, Eq.(35) means that the both
systems of Ku = f and KT u = f′ have the same
compliance value under the same deformation
condition.

The orientation optimization problem is treated
as an unconstrained optimization problem. The
mathematical statement of the orientation opti-
mization problem is as follows:

min
θ

C (θ ) (36)

The optimization problem is solved using a se-
quential quadratic programming algorithm. This
algorithm requires the sensitivity derivatives of
the objective function with respect to the design
variables to determine the optimal orientation of
extreme compliance.

For the single orientation angle case, the orienta-
tion optimization problem only has a design vari-
able θ . We now differentiate Eq. (36) with respect
to θ :

dC (θ )
dθ

=
duT

dθ
Ku+uT dK

dθ
u+uT K

du
dθ

= uT dK
dθ

u+uT (K+KT ) du
dθ

(37)

Using the fact that applied forces are design-
independent of Ku = f and KT u = f′, we have

K
du
dθ

= −dK
dθ

u

KT du
dθ

= −dKT

dθ
u

Finally, the sensitivity derivatives of the compli-
ance function is given by

dC (θ )
dθ

= −uT dKT

dθ
u (38)

3.2 The distributed angles case

When the material-orientation angles are func-
tions of spatial coordinates at discrete locations,
the orientation optimization problem is a multi-
variable θ = (θ1, θ2, · · · ,θn) design problem. The
orientation optimization problem is stated as:

min
θi

C (θi)

Eq.(38) can be extended to multiple variable cases
as follows,

∂C (θ )
∂θi

= −uT ∂KT

∂θi
u (39)

A sequential quadratic programming algorithm is
also used to solve the optimal design problem.

4 Topology optimization problem

4.1 General topology optimization

Topology-optimization implies the optimal distri-
bution of material in a structure, so as to mini-
mize its compliance, subject to the specified con-
straints of the total material to be used. According
to Eq.(32), the mean compliance of a structure is
formulated as follows:

C = fT ·u

where u is the global displacement vector, f is the
force vector. Also, the above expression can also
be written, for linear response, as:

C = uT Ku (40)

In this paper, Eq.(40) is formed by using the
MLPG Mixed Collocation Method. The design
domain Ω (Fig.1) is partitioned into randomly dis-
tributed N nodes which have no connectivity in
the form of a mesh. For an arbitrary node i, if the
number of nodes around point i which influence
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the trial function at node i is r, a sub-system con-
sists of these r nodes. In this sub-system, we have

kiui = fi (41)

where ui is the displacement vector and ki is the
“stiffness” matrix constructed in the same way as
Eq.(19). The MLPG form of Eq.(40) becomes

C =
N

∑
i=1

uT
i kiui (42)

uΓ  Displacement boundary 

 
Void 
(� =0) Solid 

(� = 1) 

Design domain 

 

tΓ  Traction boundary 

Figure 2: Topology optimization design domain

If we consider the nodal volume fractions ρi as
the design variables, then the topology optimiza-
tion problem for minimizing the compliance can
thus be stated, with the volume constraint V ∗ as
follows:

min
ρ

C (ρρρ) = uT Ku =
N

∑
i=1

uT
i kiui

s.t. V (ρρρ) =
N

∑
i=1

ρiVi = V ∗

Ku = f

0 < ρmin ≤ ρi ≤ 1

(43)

where ρρρ , the vector consisting of design variable
ρi , ρmin, is the vector of minimum allowable rel-
ative volume fractions (non-zero to avoid singu-
larity), N is the number of nodes to discretize the
design domain, and V ∗ is the prescribed volume.
V (ρ) is the total volume of material.

Setting ρmin to a small but positive value keeps the
“stiffness” matrix ki from becoming singular. The
artificial variable ρi is considered as an indicator
of the local material volume Vi. The final material
volume V ∗ is linearly related to the design vari-
ables.

The Solid Isotropic Material with Penalization
(SIMP) model leads to a common and efficient
called power-law approach. To avoid intermedi-
ate volume fraction values ρi (between 0 and 1), a
SIMP-like model (Solid Isotropic Microstructure
with Penalty) is adopted in the proposed topology
optimization method. In this SIMP-like model,
the penalized “stiffness” matrix ki is given by

ki = (ρi)
p k0

i (44)

k0
i is the initial value of the matrix ki, p is the pe-

nalization power (typically p = 3). Fig.2 displays
the relative “stiffness” ratio vs. volume fraction
values ρi, for different values of the penalization
power p.

Figure 3: SIMP-like model for different values of
the penalization power p

The MLPG Mixed Collocation Method for topol-
ogy optimization problem requires the computa-
tion of the sensitivity derivatives of the compli-
ance with respect to the design variables. The
sensitivities of the compliance respect to design
variable ρi can be derived from the expression of
Eq.(40) in the same manner as Eq.(39) as follows:

∂C
∂ρi

= −uT ∂KT

∂ρi
u (45)
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Considering the adaptation of the SIMP-like
model as Eq.(44), the above expression of Eq.(45)
is written as

∂C
∂ρi

= −p(ρi)
p−1 uT

i

(
k0

i

)T
ui (46)

4.2 The Lagrange method

The classical Lagrangian method is called as
the linear Lagrangian theory in [Goh and Yang
(2001)]. In the linear Lagrangian theory, the La-
grangian function is a linear combination of the
objective and constraint functions for solving con-
strained optimization problems. Based on linear
Lagrangian theory, we consider the Lagrangean
associated with the constrained topology opti-
mization problem Eq.(43)

L(ρρρ) = C+λ1

(
N

∑
i=1

ρiVi−V ∗
)

+ΛΛΛT (Ku− f)

+
N

∑
i=1

μ i
1 (ρmin −ρi)+

N

∑
i=1

μ i
2 (ρi −1) (47)

where λ1 and μi are Lagrange multipliers for the
equality and inequality constraints, respectively.
ΛΛΛ is the Lagrange multiplier vector.

To tackle this problem, the typical way of the
Lagrangian method is the use the Kuhn–Tucker
optimality condition which is a generalization
of the first order optimality necessary conditions
(FONC).

For a general classical single-objective nonlinear
programming problem as:

min f (x)
s.t. gi(x)≤ 0 for i = 1,2, . . ., I

h j(x) = 0 for j = 1,2, . . .,J

x = (x1,x2, · · · ,xN)

The Kuhn-Tucker condition is:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ f (x)+∑ μi∇gi(x)+∑λ j∇h j(x) = 0

(optimality)

gi(x)≤ 0 for i = 1,2, · · · , I (feasibility)

h j(x) = 0 for j = 1,2, · · · ,J (feasibility)

μigi(x) = 0 for i = 1,2, · · · , I
(complementary slackness condition)

μi ≥ 0 for i = 1,2, · · · , I (non - negativity)

(Note: λ j is unrestricted in sign)

The Kuhn-Tucker condition is a necessary con-
dition for optimality in constrained minimization
(or maximization) under a constraint qualifica-
tion. Here, the assumption is that ∇gi(x∗) for i
belonging to active constraints and ∇h j(x∗) for j
= 1,...,J are linearly independent. This is the so-
called “constraint qualification”.

The Kuhn-Tucker conditions not only give the
necessary conditions for optimality but also pro-
vide a way of finding optimal solutions. So the
Lagrange method essentially transforms a con-
strained problem to an unconstrained problem.

In this paper, the optimality criterion (OC) was
formulated in a form suitable for incorporation in
the meshless method codes. The necessary condi-
tions for optimality can be obtained by using the
Kuhn–Tucker conditions as follows:

∂L
∂ρi

= 0, i = 1,2, · · · ,N

Differentiating (47) with respect to ρi and ma-
nipulating the terms, the Kuhn-Tucker optimality
condition can be written for problems [Eq.(43)]
subject to multiple constraints as follows⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂L
∂ρi

= ∂C
∂ρi

+λ1
∂V
∂ρi

+ΛΛΛT ∂(Ku)
∂ρi

−μ1 + μ2 = 0

V (ρρρ)
N
∑
i=1

ρiVi−V ∗=0

(the equality constraints)

Ku = f (the equality constraints)

ρmin −ρi ≤ 0 (the inequality constraints)

ρi −1 ≤ 0 (the inequality constraints)

μ1 (ρmin −ρi) = 0

μ2 (ρi −1) = 0

μi ≥ 0 i = 1,2
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(48)

Note: λ1 and ΛΛΛ are unrestricted in sign, corre-
sponding to the equality constraints. It is clear
that the efficiency of the OC method is determined
mainly by the number of active constraints. If
ρmin < ρi < 1, the lower and upper bounds of
the design variables are inactive, then we have
μ1 = μ2 = 0. If ρi = ρmin, the lower bound of the
design variables are active, then we have μ1 ≥ 0,
μ2 = 0. If ρi = ρmax, the upper bound of the de-
sign variables are active, then μ1 = 0, μ2 ≥ 0. and
(48) yields:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂C
∂ρi

+λ1
∂V
∂ρi

+ΛΛΛT ∂(Ku)
∂ρi

= 0 ρmin < ρi < 1
∂C
∂ρi

+λ1
∂V
∂ρi

+ΛΛΛT ∂(Ku)
∂ρi

≥ 0 if ρi = ρmin
∂C
∂ρi

+λ1
∂V
∂ρi

+ΛΛΛT ∂(Ku)
∂ρi

≤ 0 if ρi = ρmax

V (ρρρ) =
N
∑

i=1
ρiVi−V ∗ = 0 (the equality constraints)

Ku = f (the equality constraints)

μi ≥ 0 i = 1,2

(49)

The above sensitivity of a node is dependent on
several surrounding points. For different posi-
tions, the number of nodes around one point may
different. So the sensitivity analysis is more com-
plex and time consuming when compared with the
case of element-based methods.

To derive the iterative formulation more conve-
niently, only the equality cases in Eq.(49) are used
in the present illustration, i.e.

∂C
∂ρi

+λ1
∂V
∂ρi

+ΛΛΛT
(

∂K
∂ρi

u+K
∂u
∂ρi

)
= 0

Utilizing the expression Ku = f, it is easy to ob-
tain

∂K
∂ρi

u+K
∂u
∂ρi

= 0

then

p(ρi)
p−1 uT

i

(
k0

i

)T
ui +λ1Vi = 0 (50)

Set

Bi =
p(ρi)

p−1 uT
i

(
k0

i

)T ui

λ1Vi
= 1 (51)

Eq.(50) is regarded as an Optimally Criterion
(OC) based on the discretization of the MLPG
Mixed Collocation Method. Thus, we can update
the design variables as follows:

ρnew
i =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max (ρmin,ρi−m)
if ρiB

η
i ≤ max(ρmin,ρi−m)

ρiB
η
i

if max(ρmin,ρi−m) < ρiB
η
i < min(1,ρi +m)

min(1,ρi +m)
if min(1,ρi +m) ≤ ρiB

η
i

(52)

Where m is the limit ([Bendsøe and Kikuchi
(1988)]), which represents the maximum allow-
able change in the relative nodal volume fractions
ρi in the OC iteration. η is the damping coeffi-
cient. This updating scheme was often adopted in
many presented papers. The values of m and η in-
fluence the convergence of the scheme, and they
are chosen by experience ([Bendsøe and Kikuchi
(1988)]).

The penalty parameter p is set to be 3, and the nu-
merical damping coefficient η is set to 0.5. The
Lagrange multiplier for the volume constraint λ1

is determined at each OC iteration using a bi-
sectioning algorithm, as in the paper [Sigmund
(2001)].

4.3 Filtering principle

Here we describe the principle of suppressing
checkerboard patterns which is a familiar problem
in topology optimization when numerical stabil-
ity is not guaranteed. The appearance of checker-
boarding causes difficulties in interpreting and
fabricating topology-optimized structural compo-
nents. Sigmund (1994, 1997) developed a sensi-
tivity filter method for preventing numerical insta-
bilities from occurring. Filtering techniques have
become quite popular in topology optimization
[Wang; Lim, Khoo and Wang (2008)]. To tackle
checkerboarding, a scheme similar to the filtering
method is incorporated in the optimization algo-
rithms based on the meshless discretization. In
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this scheme, we modify the design sensitivity of
any specific node depending on a weighted aver-
age of the node sensitivities in a connected neigh-
borhood. The principle works by modifying the
nodal sensitivities as follows
∩

∂C
∂ρi

=
1

ρi

m
∑

f=1
Ĥ f

m

∑
f=1

Ĥ f ρ f
∂C
∂ρ f

(53)

Here, the convolution operator (weight factor) is
written as

Ĥ f = rmin−dist (n, f ){ f ∈ M|dist (n, f ) ≤ rmin} ,

n = 1, . . .,m (54)

and the operator dist(n, f ) is defined as the dis-
tance between node n and node f . The convolu-
tion operator Ĥ f is zero outside the filter area, and
decays linearly with the distance from node f .

5 Numerical examples

In this section, the examples concern two as-
pects of the problems with several subcases. The
first aspect examines the results of the “material-
axes orientation” optimization problem. The
second aspect of examples examines the effect
of topology optimization after finding the opti-
mized “material-axes orientation”. We present
several numerical examples (cantilever and MBB-
beams). All the examples are treated here as being
dimensionless.

Example 1:

As shown in Fig. 4, the first example is that of a
short cantilever beam. The material is orthotropic,
with Young’s moduli E1 = 30, E2 = 5, Poisson’s
ratios μ12 = 0·25 and the shear moduli G12 = 2.
The design domain is clamped along the left end
and a concentrated vertical load P is acting at the
point A, B and C respectively of the free (right)
end of the beam.

The design domain Ω is discretized by the MLPG
Mixed Collocation Method using uniformly dis-
tributed nodes.

Example 2:

The second example is that of a so-called MBB
beam (Fig.7(a)) in which the right half-domain is
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y

� 

Figure 4: Cantilever beam

modeled as Fig.7(b). This is an orthotropic beam
with Young’s moduli E1 = 30, E2 = 5, Poisson’s
ratios μ12 = 0.25 and the shear moduli G12 = 2.
The design domain is discretized into 60 x 20 uni-
formly distributed nodes in the half-domain. The
left bottom is assumed to be fixed, and the right
one is assumed to be on a roller.

In the Fig.7(b), At , Bt , Ct and Ab, Bb, Cb are the 3
points at top and bottom of the MBB beam, re-
spectively, where the concentrated vertical load
P is alternatively applied. The corresponding
variations of the relative compliance vs the fixed
material-orientation for various locations of the
point of application of the load are displayed in
Fig.8 and Fig.9. When the concentrated vertical
load P is applied at the middle of the top of the
MBB beam, fig.10 gives the curves of the rela-
tive compliance vs the fixed material-orientation
for various L/H ratio case.

Figs.5-6 in example 1, and Figs.8-10 in example
2 illustrate that the load lactation and L/H ratio
influence the compliance variation significantly.
From these figures, it can be seen that the com-
pliance has different extremums, which can be
searched using the optimaization method in the
section 3.

Example 3:

The example is the same cantilever beam as in
Fig.4. The optimized material-orientation vs load
position with L/H=1 is shown in fig.11. The opti-
mized material-orientation vs the L/H ratio under
a concentrated vertical load P applied at the mid-
dle of the right end is shown in fig.12.

As a comparison, the considered problem was
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Figure 5: The relative compliance vs the fixed material-orientation for various locations of the point of
application of the load (L/H=1)

Figure 6: The relative compliance vs the fixed material-orientation for various L/H ratio cases (the load is
applied at point A)
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Figure 7(a): MBB beam Figure 7(b): MBB beam (right half-domain)

Figure 8: The relative compliance vs the fixed material-orientation for various locations of the point of
application of the load (top)
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Figure 9: The relative compliance vs the fixed material-orientation for various locations of the point of
application of the load (bottom)

Figure 10: The relative compliance vs the fixed material-orientation for various L/H ratio cases
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Figure 11(a): Cantilever beam model
Figure 11(b): The optimized orientation angle vs
load position
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P 

Figure 12(a): Cantilever beam model Figure 12(b): The optimized orientation angle vs the
L/H ratio

also calculated by using finite element method
(FEM). The results of the MLPG method are in
good agreement with the solutions of the finite el-
ement method.

Example 4:

In this example of topology optimization, a can-
tilever beam as in fig. 4 is used. The design do-
main is discretized using 40 x 40 uniformly dis-
tributed. To compare the results of isotropic and
orthotropic material cantilever beam, we choose
an orthotropic material with orientation at 4 an-
gles θ = 0˚, 45˚, 90˚ and the optimized angle, re-
spectively.

Example 5:

In this example, a cantilever beam as in fig.

4 is used with L/H=1.5. The design domain
is discretized using 60×40 uniformly distributed
nodes. To compare the results of isotropic and
orthotropic material cantilever beam, results from
topology design associated with an orthotropic
material oriented at θ = 0˚, ±60˚, 90˚C and the
optimized angle, respectively are presented.

The results shown in Fig.13 and fig.14 display
topological similarities between the isotropic ma-
terial and the orthotropic one, with material axes
of θ =0˚ and θ =90˚. We see that for orthotropic
cases, the bending-tension coupling (i.e., Q16 =
Q26 = 0) does not exist. However, the topologi-
cal layouts are very different for other orthotropic
material orientations since bending-tension cou-
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MLPG                                                                    FEM  

(a)  Isotropic material 

                                                              

                                          
MLPG                                                                    FEM  

 (b)   Orthotropic material (� = 0° )                                    

                                 
MLPG                                                                    FEM  

 (c) Orthotropic material (� = 45° ) 
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MLPG                                                                    FEM  

 (d) Orthotropic material (� = 90° )   

                                       
MLPG                                                                    FEM  

 (e)   Orthotropic material (the optimized angle )   

Figure 13: Comparison of topology optimization results

pling are significant enough to change the layouts.
It is also shown that the result obtained by the
MLPG method is identical to that of the finite el-
ement method. Furthermore, the MLPG can pro-
vide much better results in comparison with the
finite element method at θ = ±60˚.

Example 6:

This example is also that of an orthotropic can-
tilever beam with Young’s moduli E1 = 30, E2 =
5, Poisson’s ratios μ12 = 0·25 and the shear mod-
uli G12 = 2. The beam has the rectangular ‘design
domain’ (L=2H) as shown in Fig. 15. The load P
is applied at the middle of the right end.

The design domain is discretized using 40×20
uniformly distributed nodes. For the considered
beam, optimized material directions (orientation
angles) in minimum compliance design are shown
in Fig.16.

Fig. 17 gives a comparison of the topology op-
timization results for isotropic and orthotropic
material cantilever beam after the optimized or-
thotropic material directions are obtained.

Example 7:

Optimized material directions (orientation angles)
in minimum compliance design of orthotropic
MBB beam as in Fig.7 when using continuous
angles as design variables. The problem is then
solved using MLPG method. This MBB beam
is discretized using 60 x 20 uniformly distributed
nodes. The distribution of the optimized material
directions is shown in fig.18 and topology opti-
mization results in Fig.19.

Our displays of layouts for orthotropic planes re-
veal a very important effect of material directions
for topology optimization results.
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MLPG                                                                    FEM 

(a) Isotropic material 

                                 
MLPG                                                                    FEM 

 (b) Orthotropic material (� = -60°)    

                         
MLPG                                                                    FEM 

(c) Orthotropic material (� = 60°)    
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MLPG                                                                    FEM 

(d) Orthotropic material (� = 90°)  

                       
MLPG                                                                    FEM 

 (e) Orthotropic material (the optimized angle)    
Figure 14: Comparison of topology optimization results
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H 

P 

Figure 15: Cantilever beam (L=2H)

Figure 16: The distribution of orthotropic orien-
tation

6 Conclusions

The structural design of an anisotropic solid in-
volves an adaptation of the combined stages of
the material-orientation optimization along with
the topology optimization. Here we consider the
optimization problem which minimizes the mean
compliance of the structure. In the first stage, the
material-orientation is the design variable with-
out constraints (size optimization) and a sequen-
tial quadratic programming algorithm in which is
a gradient based technique is used for efficient de-
sign. In the second stage, it is shown that dif-
ferent orientations of the same orthotropic ma-
terial influence the optimal results of the global
structure. The topology optimization problem is
treated as the material distribution problem. The
nodal values are used as the design variables, and
the problem becomes one of finding the optimal
values of the relative nodal volume fractions. In
this paper, design domains are discretized by us-
ing the MLPG mixed collocation method, and a
node with zero relative nodal volume fraction rep-
resents a void and a node with a relative nodal
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(a) Isotropic material 

 

(b) Orthotropic material with the optimized orientation 

Figure 17: Comparison of topology optimization
results

Figure 18: The distribution of orthotropic orien-
tation

volume fraction of 1 represents a solid node. The
goal is to find a distribution of relative nodal vol-
ume fractions that minimizes a compliance ob-
jective function, subject to volume constraints.
To solve such a topology optimization problem,
the popular optimality criteria (OC) based on the
Lagrange method is employed with an iterative
heuristic scheme for updating the design vari-
ables. In this paper, one of the significant findings
is that of the topology optimized design for an or-
thotropic material results in a significantly differ-
ent layout as compared to the isotropic material.
This means that the solution space for the topol-
ogy optimization problems is extended. So we

   
(a) Isotropic material 

   
(b) Orthotropic material with the optimized orientation 

Figure 19: Comparison of topology optimization
results

have a considerably more flexible topology layout
for an anisotropic solid, than when an isotropic
material is used. The present method provides
a physical insight into how the anisotropic mate-
rial design variables interact to affect the topology
properties of the structure.

We provide several numerical examples to
demonstrate the versatility of the present method.
For validation purposes, in some specific cases,
the same topology optimization problem is solved
using the finite element method, and the layouts
can be compared with each other. The numeri-
cal instability problems related to a finite element
mesh do not exist in the MLPG method. It need
not cost extra CPU-time to deal with such numer-
ical instabilities. The filtering technique is highly
suitable for the present MLPG method.
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Topology-optimization of Structures Based on the MLPG Mixed
Collocation Method

Shu Li1 and S. N. Atluri2

Abstract: The Meshless Local Petrov-Galerkin
(MLPG) “mixed collocation” method is applied
to the problem of topology-optimization of elas-
tic structures. In this paper, the topic of compli-
ance minimization of elastic structures is pursued,
and nodal design variables which represent nodal
volume fractions at discretized nodes are adopted.
A so-called nodal sensitivity filter is employed,
to prevent the phenomenon of checkerboarding in
numerical solutions to the topology-optimization
problems. The example results presented in the
paper demonstrate the suitability and versatility of
the MLPG “mixed collocation” method, in imple-
menting structural topology-optimization.

Keyword: topology optimization, meshless
method, MLPG, collocation, mixed method

1 Introduction

The quantity of engineering literature on the
topology-optimization has grown very rapidly in
the last two decades, starting with the so-called
homogenization method for structural topology
[Bendsøe and Kikuchi (1988)]. The topology op-
timization problem is usually described as a ma-
terial distribution design problem, a so-called 0-
1 problem in nature. By optimizing an objec-
tive function, subject to constraints on the design
domain, one can employ topology-optimization
techniques to engineer load-bearing structures
with high strength, light weight and high fracture
resistance [Chiandussi, Gaviglio and Ibba (2004),
Hansen and Horst(2008)]. Topology optimization
has been identified as one of the most challenging
and potentially useful techniques in the field of

1 Department of Aircraft Engineering, Beijing University of
Aeronautics and Astronautics, Beijing 100083, P.R. China

2 Center for Aerospace Research & Education, University
of California, Irvine, USA

structural design. Most research work on topol-
ogy optimization for continuum structures con-
cerns new topology models, solutions of ill-posed
problems, Optimality Criteria, etc. The earlier de-
velopments in the field of topology-optimization
were described in an overview paper [Eschenauer
and Olhoff(2001)], and in a monograph [Bendsøe
and Sigmund (2003)]. Recently, with the increase
of interest in this field, various models and meth-
ods for structural topology optimization were ex-
plored, with goals of improving the computational
efficiency, and alleviating numerical instabilities
[Norato, Bendsøe, Haber and Tortorelli (2007),
Vemaganti and Lawrence (2005), Cisilino(2006),
Wang and Wang (2006b,c), Wang, Lim, Khoo
and Wang (2007a, b, c, 2008), Zhou and Wang
(2006)].

In practice, discretization and the use of numer-
ical methods are unavoidable in order to design
a complex and practical structure. Typically, ap-
proaches for solving topology optimization prob-
lems have been mostly based on the traditional
element-based methods. Almost all of the ap-
proaches presented in prior literature employ fi-
nite element methods to discretize the topolog-
ical domain. An exhaustive list of publications
on subject of the topology and shape optimiza-
tion of structures, using the finite element and
boundary element techniques, is given in [Mack-
erle (2003)]. However, the use of finite ele-
ment methods within the optimization procedures
often leads to numerical instabilities, such as
mesh-dependencies, etc [Sigmund and Petersson
(1998)]. It is well known that topology optimiza-
tion is a far more time-consuming task, because
of its complicated evolutionary procedure and re-
finement of mesh density.

In recent years, substantial efforts have been
made in the development of the meshless meth-
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ods, especially the MLPG method [Atluri and
Zhu(1998), Atluri and Shen(2002a, 2002b), and
Atluri(2004)]. These meshless methods have
inherent advantages over the element-based ap-
proaches, due to the elimination of the mesh, and
the ease with which a high-order continuity of the
trial functions is achieved. Atluri, Liu, and Han
(2006) have recently proposed a very attractive
and promising method which they call the MLPG
“mixed collocation” method. In this method, a
very simple formulation is achieved, and the com-
puter implementation is very convenient. These
benefits are realized, without any numerical inte-
gration either over a local domain or over the lo-
cal boundary. This method improves the compu-
tational efficiency and the ease of implementation
of the meshless method, especially for topology-
optimization.

The present paper is dedicated to topology-
optimization of continuum structures using the
MLPG “mixed collocation” method. The main
features of this paper are: the use of the MLPG
“mixed collocation” method to discretize the de-
sign domain, and the choice of nodal volume
fractions as the optimization design variables, in-
stead of the element volume fractions. We em-
ploy the widely used density-like function called
SIMP (Solid Isotropic Material with Penaliza-
tion) model for the penalization. The objective
of topology-optimization is to minimize the com-
pliance for an optimal layout of structures, under
a given set of loads and boundary conditions. The
method of Optimality Criteria (OC) is employed
to solve the topology optimization problem. Here,
structural volume fractions become a function of
the nodal volume fractions. Compared with the
element-based methods such as in [Guest, Prévost
and Belytschko (2004)], these nodal values need
not be interpolated or projected onto the element,
in order to obtain the familiar element-wise vol-
ume fractions which can determine the topology
of structures. The numerical examples presented
here demonstrate that the MLPG mixed colloca-
tion method renders the solution of the optimiza-
tion problem to be highly accurate and computa-
tionally efficient.

The framework of this paper is as follows: Section

2 briefly reviews the major aspects of the MLPG
mixed collocation method. Section 3 gives a
formulation for the structural topology optimiza-
tion, a heuristic scheme of the optimality criteria
(OC) method, and the filtering principle. Section
4 presents some examples. Finally, we present
some conclusions in Section 5.

2 MLPG Mixed Collocation Method

2.1 The moving least squares (MLS)

The moving least squares (MLS) approximation
is often chosen as the interpolation function in
a meshless approximation of the trial function.
The MLPG Mixed Collocation Method adopts the
MLS interpolation to approximate a function u(x)
over a number of nodes randomly spread within
the domain of influence. The approximated func-
tion u(x) can be written as [Atluri (2004)]

u(x) = pT(x)a(x) (1)

where pT(x) is a monomial basis which can be ex-
pressed as pT(x) = [1,x1,x2] for two-dimensional
problems and pT(x) = [1,x1,x2,x3] for three di-
mensional problems, respectively. a(x) is a vec-
tor of undetermined coefficients, which can be
obtained by minimizing the weighted discrete L2

norm, defined as

J(x) =
m

∑
I=1

wI (x)
[
pT (xI)a(x)− ûI]2 (2)

where {xI} , (I = 1,2, . . .,m) are scattered local
points (nodes) to approximate the function u(x),
wI are the weight functions and ûI are the ficti-
tious nodal values. After the coefficient vector
a(x) is obtained, we substitute it into Eq. (1). The
function u(x) can be approximated by these ficti-
tious nodal values, as

u(x) =
m

∑
I=1

ΨI (x) ûI (3)

where ûI is the virtual nodal value at node I, and
ΨI (x) is the shape function. The detailed formu-
lations and discussions for the MLS interpolation,
using the true nodal values can be found in Atluri
(2004).



Topology-optimization of Structures Based on the MLPG Mixed Collocation Method 63

Generally speaking, the MLS shape function does
not have the Dirac Delta property, namely

uI ≡ u(xI) =
m

∑
J=1

ΨJ (x) ûI �= ûI (4)

However, with the mapping relationship between
the virtual and true nodal values [Eq. (4)], it is
straightforward to establish the trial functions in
the true nodal-values space as

u(x) =
m

∑
I=1

ΦI (x)uI (5)

2.2 Equilibrium equations

We consider a linear elastic body Ω undergo-
ing infinitesimal deformations. The equilibrium
equation can be expressed as

∇ ·σσσ + f = 0 (6)

subject to the boundary conditions:

u = u on Γu

t = n ·σσσ = t on Γt
(7)

In whichσσσ is the stress tensor, ∇is the gradient
vector, f is the body force vector; u is the displace-
ment vector, t is the traction vector, and n is the
outward unit normal to the boundary Γ.

Within the general MLPG framework
[Atluri(2004)], one may choose the Dirac
Delta function as the test function for the un-
symmetric local weak form, and apply it to each
nodal point. The momentum balance equation is
enforced at the nodal points, as

[∇ ·σσσ ]
(
xI)+ f

(
xI)= 0 (8)

where
{

xI
}

, (I = 1,2, . . .,N) are the distributed
nodes, and N is the number of total distributed
nodes in the solution domain. In the present
mixed scheme, we interpolate the displacement
vector u(x) and the stress tensor σσσ (x) indepen-
dently, using the same shape functions obtained
from the MLS approximation [Eq. (3)], namely

u(x) =
m

∑
J=1

ΦΦΦJ (x)uJ (9)

σσσ (x) =
m

∑
J=1

ΦΦΦJ (x)σσσ J (10)

Here, uJ and σσσ J are the nodal displacement vector
and stress vector [note that the stress tensor is now
symbolically re-written as a stress-vector] at node
J, respectively. In the case of the isotropic lin-
ear elastic problem, the relation between the stress
vector σσσ and the strain vector εεε can be written as

σσσ = D ·εεε (11)

εεε = L∗ ·u (12)

where, L∗ a differential operator, for the present
2D problem,

D =
E

1−ν2

⎡
⎣1 ν 0

ν 1 0
0 0 1−ν

2

⎤
⎦

with E the Young’s modulus, ν the Poisson’s ra-
tio. Upon substituting the stress interpolation Eq.
(10) into Eq. (8), we have

m

∑
J=1

∇ ·ΦΦΦJ
(
xI
) ·σσσ J + f

(
xI
)

= 0;

for I = 1,2, . . .,N (13)

It clearly shows that there are no second deriva-
tives of the shape functions for the displacements
involved in the system equations, due to the inde-
pendent interpolation of the stress variables. It is
well known that in the meshless approximation,
specifically the MLS, usually results in a very
complex form of the second derivatives. The Eq.
(13) has less number of equations than the number
of the independent stress variables, because the
nodal stress variables are more than the displace-
ment ones. Therefore, we need to establish some
more equations in addition to Eq. (11) through the
stress displacement relation. The standard collo-
cation method may be applied to enforce the stress
displacement relation at each nodal point. For lin-
ear elasticity problems, this relation can be writ-
ten as

σσσ
(
xI)= D ·εεε (xI)= D ·L∗ ·u(xI) (14)
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After substituting the displacement interpolation
Eq. (9) into Eq. (14), we have

σσσ J =
m

∑
J=1

DBJ (xI)uJ (15)

where

BJ (xI)=

⎡
⎣ΦJ

,x

(
xI
)

0
0 ΦJ

,y

(
xI
)

ΦJ
,y

(
xI
)

ΦJ
,x

(
xI
)
⎤
⎦ (16)

σσσ J =
[
σ J

x σ J
y τJ

xy

]T

uJ =
[
uJ

x uJ
y

]T
Eq. (13) and Eq. (14) can be rewritten in the form
as follows, respectively:

KS ·σσσ = fb (17)

σσσ = T ·u (18)

In which fb is the body force vector.

We set BIJ = BJ
(
xI
)
, thus

KS =

⎡
⎢⎢⎢⎣

BT
11 BT

12 · · · BT
1n

BT
21 BT

22 · · · BT
2n

...
...

...
...

BT
n1 BT

n1 · · · BT
nn

⎤
⎥⎥⎥⎦

T = D ·

⎡
⎢⎢⎢⎣

B11 B12 · · · B1n

B21 B22 · · · B2n
...

...
...

...
Bn1 Bn1 · · · Bnn

⎤
⎥⎥⎥⎦

and

σσσ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

σσσ1

σσσ2

...
σσσJ

...
σσσN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, u =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1

u2

...
uJ

...
uN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Let

K = KS ·T (19)

which yields the well known formulation of equi-
librium equation

Ku = fb (20)

where

KIJ =
m

∑
K=1

BT
IKDBKJ (21)

2.3 Boundary Conditions

The traction boundary conditions are enforced at
each of the traction boundary nodes K, as:

nK ·σσσK = tK
, for K = 1, . . . ,S (22)

where S is the number of total traction boundary
nodes, the matrix nK is the transformation matrix
between the coordinates, as

nK =
[
nK

x 0 nK
y

0 nK
y nK

x

]

and

σσσK =
[
σK

x σK
y τK

xy

]T
, tK =

[
tK
x tK

y

]T
Assuming σσσ1 and σσσ2 represent the known and un-
known stress vectors, respectively. Hence Eq.(20)
can be written as

K1 ·σσσ 1 +K2 ·σσσ2 = fb (23)

where

σσσ1 = T1 ·u (24)

σσσ2 = T2 ·u (25)

Premultiplying Eq. (22) by the penalty number α
and the transpose of the transformation matrix n,
we obtain:

αnT ·n ·σσσ 1 = αnT · t (26)
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where

n =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

n1 0
n2

. . .
nK

. . .
0 nS

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

σσσ1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

σσσ 1

σσσ 2

...
σσσK

...
σσσS

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, t =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t1

t2

...

tK

...
tS

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

It is easy to obtain

σσσ1 +αnT ·n ·σσσ 1 = T1 ·u+αnT · t (27)

and

σσσ1 =
(
I+αnT ·n)−1 (

T1 ·u+αnT · t) (28)

where I is unit matrix.

Let

Q =
(
I+αnT ·n)−1

(29)

then

σσσ1 = Q ·T ·1 u+αQ ·nT · t (30)

By substituting Eq. (30) into Eq.(23), we can ob-
tain a discretized system which is expressed as

K ·u = f (31)

where

K = K1 ·Q ·T1 +K2 ·T2

f = fb −αK1 ·Q ·nT · t (32)

3 Topology optimization problem

3.1 Problem formulation

Topology-optimization implies the optimal distri-
bution of material in a structure, so as to mini-
mize its compliance, subject to the specified con-
straints of the total material to be used. Here,

‘compliance’ is defined as the product of the ex-
ternal loads and the corresponding displacements.
According to Eq.(31), the mean compliance of a
structure is formulated as follows:

C = fT ·u (33)

where u is the global displacement vector, f is the
force vector. Also, the above expression can also
be written, for linear response, as:

C = uTKu (34)

In practice, Eq.(34) is discretized using the MLPG
Mixed Collocation Method. The design domain
Ω (Fig.1) is partitioned into N nodes. For an arbi-
trary node i, if the number of nodes around point
i which influence the trial function at node i is r, a
sub-system consists of these r nodes. In this sub-
system, we have

kiui = fi (35)

where ui is the displacement vector and ki is the
“stiffness” matrix constructed in the same way as
Eq.(19). The discretized formulation of Eq.(34)
becomes

C =
N

∑
i=1

uT
i kiui (36)

uΓ  Displacement boundary 

Void
(  =0) Solid

(  = 1) 

Design domain 

tΓ  Traction boundary 

Figure 1: Two-dimensional design domain for
topology optimization

If we consider the nodal volume fractions ρias the
design variables, then the topology optimization
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problem for minimizing the compliance can thus
be stated, with the volume constraint V ∗ as fol-
lows:

min
ρρρ

C (ρρρ) = uTKu =
N

∑
i=1

uT
i kiui

subject to V (ρρρ) =
N

∑
i=1

ρiVi = V ∗

Ku = f

0 < ρmin ≤ ρi ≤ 1

(37)

where ρρρ is the vector consisted of design variable
ρi , ρmin is the minimum allowable relative vol-
ume fractions (non-zero to avoid singularity), N is
the number of nodes to discretize the design do-
main, and V ∗ is the prescribed volume. V (ρ) is
the total volume of material.

Setting ρmin to a positive value keeps the “stiff-
ness” matrix ki from becoming singular. The ar-
tificial variable ρi is considered as an indicator of
the local material volume Vi. The final material
volume V ∗ is linearly related to the design vari-
ables.

To avoid intermediate volume fraction values ρi

(between 0 and 1), a SIMP-like model (Solid
Isotropic Microstructure with Penalty) is adopted
in the proposed topology optimization method. In
this SIMP-like model, the penalized “stiffness”
matrix ki is given by

ki = (ρi)
p k0

i (38)

k0
i is the initial value of the matrix ki, p is the pe-

nalization power (typically p = 3). Fig.2 displays
the relative “stiffness” ratio vs. volume fraction
values ρi, for different values of the penalization
power p.

Due to the asymmetry of the matrix K in the
MLPG “Mixed Collocation” method, the sensitiv-
ities of the compliance respect to design variable
ρi can be derived from the expression of Eq.(33),
as follows:

∂C
∂ρi

= fT · ∂u
∂ρi

= (Ku)T ∂u
∂ρi

= uTKT ∂u
∂ρi

= uT
i kT

i
∂ui

∂ρi

(39)

Figure 2: SIMP-like model for different values of
the penalization power p

We consider the discretized formulations kiui = fi

and C =
N
∑
i=1

uT
i kiui. Because the derivative of fi

with respect to ρi is null, we can obtain:

∂ki

∂ρi
ui = −ki

∂ui

∂ρi
(40)

Substituting Eq.(38) into Eq.(40), we have

p(ρi)
p−1 k0

i ui = −(ρi)
p k0

i
∂ui

∂ρi

i.e.

∂ui

∂ρi
= − 1

ρi
pui (41)

Finally, the expression of Eq.(39) is written as

∂C
∂ρi

= uT
i kT

i
∂ui

∂ρi

= uT
i

(
(ρi)

p k0
i

)T
(
− 1

ρi
pui

)

= −p(ρi)
p−1 uT

i

(
k0

i

)T
ui

(42)

3.2 The optimally criteria (OC) method

The discrete topology optimization problem (39)
usually has a large number of design variables. It
is natural to use iterative optimization methods for
such a problem. Here, we choose the popular Op-
timality Criteria (OC) method for iterative opti-
mization. Optimality Criteria methods seek the
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optimum in the space of the Lagrange multipliers
relevant to the active constraints based upon the
Kuhn-Tucker (K-T) Conditions. These K-T Con-
ditions are an extension of the Lagrangian theory
to solve the general classical single-objective non-
linear programming problem. They provide pow-
erful tools to search optimal solutions. The com-
putational time of the OC method is highly depen-
dent on the number of active constraints. In this
paper, the optimality criteria (OC) was formulated
in a form suitable for incorporation in the mesh-
less method codes.

The Lagrangian for the optimization problem
[Eq.(39)] is defined as

L(ρρρ) = C+λ1

(
N

∑
i=1

ρiVi−V ∗
)

+ΛΛΛT (Ku− f)

+
N

∑
i=1

μ i
1 (ρmin −ρi)+

N

∑
i=1

μ i
2 (ρ i −1) (43)

where λ1 andμi are Lagrange multipliers for the
equality and inequality constraints, respectively.
ΛΛΛ is the Lagrange multiplier vector. The neces-
sary conditions for optimality can be obtained by
using the Kuhn–Tucker conditions as follows:

∂L
∂ρi

= 0, i = 1,2, . . .,N

Differentiating (43) with respect to ρi and ma-
nipulating the terms, the Kuhn-Tucker optimality
condition can be written for problems [Eq.(37)]
subject to multiple constraints as follows

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂L
∂ρi

= ∂C
∂ρi

+λ1
∂V
∂ρi

+ΛΛΛT ∂(Ku)
∂ρi

−μ1 + μ2 = 0

V (ρρρ) =
N
∑

i=1
ρiVi−V ∗ = 0

(the equality constraints )
Ku = f (the equality constraints )
ρρρmin −ρρρ i ≤ 0 (the inequality constraints )
ρρρ i −1 ≤ 0 (the inequality constraints )
μ1 (ρmin −ρi) = 0

μ2 (ρi −1) = 0

μi ≥ 0 i = 1,2

(44)

Note: λ1 and ΛΛΛ are unrestricted in sign, corre-
sponding to the equality constraints. It is clear
that the efficiency of the OC method is determined
mainly by the number of active constraints. If
ρmin < ρi < 1, the lower and upper bounds of the
design variables are inactive, then we have μ1 =
μ2 = 0. If ρi = ρmin, the lower bound of the design
variables are active, then we have μ1 ≥ 0,μ2 = 0.
If ρi = ρmax, the upper bound of the design vari-
ables are active, then μ1 = 0,μ2 ≥ 0. and (44)
yields:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂C
∂ρi

+λ1
∂V
∂ρi

+ΛΛΛT ∂(Ku)
∂ρi

= 0 if ρmin < ρi < 1
∂C
∂ρi

+λ1
∂V
∂ρi

+ΛΛΛT ∂(Ku)
∂ρi

≥ 0 if ρi = ρmin
∂C
∂ρi

+λ1
∂V
∂ρi

+ΛΛΛT ∂(Ku)
∂ρi

≤ 0 if ρi = ρmax

V (ρρρ) =
N
∑

i=1
ρiVi−V ∗ = 0

(the equality constraints )
Ku = f (the equality constraints )
μi ≥ 0 i = 1,2

(45)

The above sensitivity of a node is dependent on
several surrounding points. For different posi-
tions, the number of nodes around one point may
different. So the sensitivity analysis is more com-
plex and time consuming when compared with the
case of element-based methods.

To derive the iterative formulation more conve-
niently, only the equality cases in Eq.(45) are used
in the present illustration, i.e.

∂C
∂ρi

+λ1
∂V
∂ρi

+ΛΛΛT
(

∂K
∂ρi

u+K
∂u
∂ρi

)
= 0

Utilizing the expression Ku = f, it is easy to ob-
tain

∂K
∂ρi

u+K
∂u
∂ρi

= 0

then

−p(ρi)
p−1 uT

i

(
k0

i

)T
ui +λ1Vi = 0 (46)

Set

Bi =
p(ρi)

p−1 uT
i

(
k0

i

)T ui

λ1Vi
= 1 (47)
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Eq.(47) is regarded as an Optimally Criteria (OC)
based on the discretization of the MLPG Mixed
Collocation Method. Thus, we can update the de-
sign variables as follows:

ρnew
i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max(ρmin,ρi −m)
if ρiB

η
i ≤ max (ρmin,ρi−m)

ρiB
η
i

if max(ρmin,ρi −m) < ρiB
η
i

< min(1,ρi +m)
min(1,ρi +m)

if min(1,ρi +m)≤ ρiB
η
i

(48)

Where m is the limit ([Bendsøe and Kikuchi
(1988)]), which represents the maximum allow-
able change in the relative nodal volume fractions
ρi in the OC iteration. η is the damping coeffi-
cient. This updating scheme was often adopted in
many presented papers. The values of m and η in-
fluence the convergence of the scheme, and they
are chosen by experience ([Bendsøe and Kikuchi
(1988)]).

The penalty parameter p is set to be 3, and the nu-
merical damping coefficient η is set to 0.5. The
Lagrange multiplier for the volume constraint λ1

is determined at each OC iteration using a bi-
sectioning algorithm, as in the paper [Sigmund
(2001)].

3.3 Filtering principle

Here we describe the principle of suppressing
checkerboard patterns, which is a familiar prob-
lem in topology optimization when numerical
stability is not guaranteed. The appearance of
checkerboarding causes difficulties in interpret-
ing and fabricating topology-optimized structural
components. Sigmund (1994, 1997) developed
a sensitivity filter method for preventing numer-
ical instabilities from occurring. Filtering tech-
niques have become quite popular in topology op-
timization [Wang; Lim, Khoo and Wang (2008)].
To tackle checkerboarding, a scheme similar to
the filtering method is incorporated in the opti-
mization algorithms based on the meshless dis-
cretization. In this scheme, we modify the de-

sign sensitivity of any specific node depending on
a weighted average of the node sensitivities in a
connected neighborhood. The principle works by
modifying the nodal sensitivities as follows

ˆ∂C
∂ρi

=
1

ρi

m
∑

f=1
Ĥ f

m

∑
f=1

Ĥ f ρ f
∂C
∂ρ f

(49)

Here, the convolution operator (weight factor) is
written as

Ĥ f = rmin −dist (n, f )
{ f ∈ M |dist (n, f ) ≤ rmin},

n = 1, · · · ,m (50)

and the operator dist(n, f ) is defined as the dis-
tance between node n and node f . The convolu-
tion operator Ĥ f is zero outside the filter area, and
decays linearly with the distance from node f .

4 Numerical examples

In this section, we present several numerical ex-
amples (cantilever and MBB-beams). They are
used to illustrate the suitability of the MLPG
Mixed Collocation Method for solving topology
optimization problems with volume constraints.
All the following examples are treated here as be-
ing dimensionless.

4.1 Verification of the validity and convergence

The topology-optimization problem is an ill-
posed problem, with a lack of proof existence of
solutions, since it often results in a complex ma-
terial distribution [Eschenauer and Olhoff(2001)].
The convergence of solutions can not be guaran-
teed numerically. The validity and convergence
are the important areas of concern for the solution
of the topology optimization problem. We want
to compare the results by the present method with
the ones by finite element method (FEM).

Example 1:

The first example is that of a short cantilever beam
as shown in Fig. 3. The design domain is fixed
along the left edge and a concentrated vertical
load P is applied at the bottom corner of the free
(right) end of the beam.
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L

H

P
Figure 3: Cantilever beam I (L=H)

To determine an optimum structural layout, the
square ‘design domain’ (L=H) is discretized by
the MLPG Mixed Collocation Method using
20×20, 40×40, 80 × 80 uniformly distributed
nodes, respectively.

The same problem is also solved by using the fi-
nite element method (FEM) by Sigmund(2001)
for mesh refinements of 20×20, 40×40, 80× 80
elements. The optimized topology results using
the meshless method and finite element method
are shown in Fig. 4 and Fig.5, respectively. It can
be seen that for this example, the similar topolo-
gies were obtained by two different algorithms.

Example 2:

The second case is the so-called MBB beam
[Zhou and Rozvany 1991] which only the right
half-domain (Fig.7) is used for the analysis. The
design domain is discretized into 60×20, 90×30,
120×40 uniformly distributed nodes in the half-
domain, respectively. The left bottom is assumed
to be fixed, and the right one is assumed to be
on a roller. The concentrated load P is applied at
the middle of the top of the beam. As a compari-
son, the considered problem was also investigated
by using finite element method (FEM). The mesh
refinements are of 60×20, 90×30, 120×40 ele-
ments in the half-domain, respectively. The so-
lutions are given in Fig.8 and Fig.9. After com-
paring these solutions, it can be seen from that

(a) MLPG 20x20        

(b) MLPG 40x40     

(c) MLPG 80x80       

        (a)  FEM 20x20

      (b) FEM 40x40

         (c) FEM 80x80 

Figure 4: Topology op-
timization results of the
cantilever beam by the
MLPG Mixed Colloca-
tion Method

Figure 5: Topology op-
timization results of the
cantilever beam by FEM
methods

similar topologies can be obtained in the MLPG
“Mixed Collocation” method, as in the FEM.

Fig.6 and Fig.10 give three curves of convergence
of the cantilever and MBB beams’ mean com-
pliance, respectively. The almost monotonic and
uniform convergence can be observed from these
figures. The mean compliances steadily decrease
as the iteration number is increased. Their conver-
gence characteristics are very similar. Note that
for both the above examples, the iterative perfor-
mances of the discretization differ very little.

The validity and convergence of the present topol-
ogy optimization method are verified by the ex-
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Figure 6: Convergence history of the cantilever
beam compliance using the present method

P

Figure 7: MBB beam (right half-domain)

cellent agreement between the results of mesh-
less method and FEM. However, when FEM does
converge to the same topology, the phenomena
of mesh-dependency appears (Fig.10(c)) although
a filter is applied. The appearance of mesh de-
pendence is a common problem in topology op-
timization, wherein the solution to the topology
optimization changes qualitatively as the mesh is
refined. Fortunately, no phenomenon of mesh-
dependence is found in the case of MLPG Mixed
Collocation Method.

4.2 Effectiveness of filtering

Checkerboard patterns are another common prob-
lem which are often present in optimal topolo-
gies generated by continuum topology optimiza-

(a) MLPG 60X20              

(b) MLPG 90X30              

(c) MLPG 120x40              

                (a)FEM 60X20 

               (b) FEM 90X30

               (c) FEM 120x40

Figure 8: Optimal
configuration of MBB
beam (halves) by the
MLPG Mixed Colloca-
tion Method

Figure 9: Optimal con-
figuration of MBB beam
(halves) by FEM meth-
ods

Figure 10: Convergence history of the MBB beam
compliance using the present method

tion methods. Sigmund (1994) suggested a fil-
tering method, which is shown to be effective in
suppressing the formation of checkerboard pat-
terns. To illustrate the filtering effect, we consider
a cantilever beam in Fig. 11 and a MBB beam in
Fig.14.

Example 3:

This example is also that of a short cantilever
beam which has the rectangular ‘design domain’
(L=2H) as shown in Fig. 11. The load P is applied
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at the middle of the right end.

L

H

P

Figure 11: Cantilever beam II (L=2H)

The design domain is discretized using 40 x 20,
60 x 30, 80 x 40 uniformly distributed nodes, re-
spectively. For the considered beam, topologies
are given in Fig. 12 and Fig.13.

We can see the effects of the filter. A sample
MLPG solution with checkerboarding is shown in
Fig.12. Fig.13 shows the final optimal layouts of
the short cantilever beam after filtering. It can be
seen that the checkerboard pattern disappears and
optimal configurations became more clear. The
filtering properties of the present method are thus
verified.

(a) 40x20                       

(b) 60x30                        

 (c) 80x40                      

                       (a) 40x20

                        (b) 60x30 

                       (c) 80x40 

Figure 12: Optimal con-
figuration before filter-
ing

Figure 13: Optimal con-
figuration after filtering

Example 4:

We now solve another simple topology opti-
mization problem for various discretization cases,
i.e. 40×20, 60×30, 80×40 uniformly distributed
nodes, respectively. The domain and boundary
conditions for the problem chosen are shown in
Fig. 14. In this case, the beam is of given length
L and depth H, and both the ends are simply sup-
ported. The remaining volume ratio is 30%.

P

L

H

Figure 14: MBB-beam

Fig.15 shows that the algorithm finds a typical
bar-design, The results are found to be similar to
those in [Eschenauer and Olhoff(2001)]. In this
example, we find that the optimum structural lay-
outs are polluted by so-called checkerboard pat-
terns. Figs.16 show that the checkerboards can be
completely eliminated by the present nodal sensi-
tivity filter. This example shows that the filter is
good for eliminating checkerboarding. As a result
of this, it is desirable to suppress the formation of
checkerboard patterns in continuum topology op-
timization.

4.3 Comparison of topology with different “re-
maining volume” ratio

Example 5:

The example is that of an MBB beam as in Fig.
17. This case is a bridge-structure with same
boundary conditions and different load location
as the MBB beam in Example 4. The beam has
length L and depth H with ratio L/H=2.

These optimal designs have the “remaining vol-
umes” of 60%, 50%, 40%, 30%, 20% and 10 % of
the initial volume, respectively. The final topolo-
gies of MBB beam are shown in Fig.18. This de-
sign finds a classic Michell type structure and a
typical bar-design. The same results can be ob-



72 Copyright c© 2008 Tech Science Press CMES, vol.26, no.1, pp.61-74, 2008

(a) 40X20                            

(b) 60X30                         

(c) 80X40                           

                           (a) 40X20 

                       (b) 60X30 

                          (c) 80X40 

Figure 15: Optimal con-
figuration before filter-
ing

Figure 16: Optimal con-
figuration after filtering

P

L

H

Figure 17: MBB-beam

tained by using Sigmund’s 99 line code in Matlab
[Sigmund (2001)].

Example 6:

In this example, we consider the initial design of
a bridge structure for a prescribed (hatched) area
subject to uniformly distributed load (Fig.19).
The two points at the bottom surface corners are
simply supported. The bridge-structure has a 2:1
ratio for the length:width. The whole structure is
modelled by 60×30 nodes. The hatched part is
the required minimum thickness at the top of the
bridge, which is specified as a non-design domain.
We obtain the initial optimal designs for different
“remaining volume” limits of 70, 60, 50, 40, 30
and 20 % of the initial volume.

Fig.20 displays an optimal design for the bridge

(a)  V=60%                                                  (b)  V=50%

(c)  V=40%                                                (d)  V=30% 

(e)  V=20%                                               (f)  V=10% 

Figure 18: The final topologies of MBB beam
with different volume

L

H

P Nondesign
domain

Figure 19: Bridge structure

structure using the conventional MLPG mixed
collocation method. When the remaining mate-
rial volume is less than 50%, the topologically
optimized structure is becoming a typical arch
truss system. This is a perfect construction that
transfers the loads to the supports very efficiently
through a reasonable path.

5 Conclusions

The MLPG method is implemented to solve the
topology optimization problem. In this paper, de-
sign domains are discretized by using the MLPG
mixed collocation method, and the material distri-
bution problem becomes one of finding the opti-
mal values of the relative nodal volume fractions.
A node with zero relative nodal volume fraction
represents a void and a node with a relative nodal
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(a) V=70%                                                 (b) V=60% 

(c)  V=50%                                                  (d)  V=40%

(e) V=30%                                                          (f) V=20%

Figure 20: The final topologies of bridge structure
with different volume

volume fraction of 1 represents a solid node. The
goal is to find a distribution of relative nodal vol-
ume fractions that minimizes a compliance objec-
tive function, subject to volume constraints. To
solve such a topology optimization problem, the
popular optimality criteria (OC) method is em-
ployed with an iterative heuristic scheme for up-
dating the design variables.

In this paper, we show several numerical exam-
ples to demonstrate the validity and convergence
of the present method. We examine the effect of
filtering on the resulting topology. We compare
the various numerical results in solving topol-
ogy optimization problems. Summarizing our re-
search, the present method has the following ad-
vantages:

The filtering technique is not certain in general to
suppress the mesh-dependency problem in the fi-
nite element method. The present method does
not use a mesh of elements. The numerical in-
stability problems related to mesh do not exist. It
need not cost extra CPU-time to deal with such
the numerical instabilities. The filtering technique
is highly suitable for the present MLPG method.

The nodal values are used as the design variables.
It can be seen, by comparing with the element-

based methods, that it is not necessary to inter-
polate or project those design variables onto an
element space.

The formulation of the MLPG mixed collocation
method is established at the nodal points. It is
unnecessary to integrate over the design domain,
during the optimization procedure. So the imple-
mentation becomes very convenient and efficient.
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of Naval Research.
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A Novel Time Integration Method for Solving A Large System of
Non-Linear Algebraic Equations

Chein-Shan Liu1 and Satya N. Atluri2

Abstract: Iterative algorithms for solving a
nonlinear system of algebraic equations of the
type: Fi(x j) = 0, i, j = 1, . . . ,n date back to
the seminal work of Issac Newton. Nowadays
a Newton-like algorithm is still the most popu-
lar one due to its easy numerical implementa-
tion. However, this type of algorithm is sensitive
to the initial guess of the solution and is expen-
sive in the computations of the Jacobian matrix
∂Fi/∂x j and its inverse at each iterative step. In
a time-integration of a system of nonlinear Ordi-
nary Differential Equations (ODEs) of the type
Bi jẋ j + Fi = 0 where Bi j are nonlinear functions
of x j , the methods which involve an inverse of
the Jacobain matrix Bi j = ∂Fi/∂x j are called “Im-
plicit”, while those that do not involve an inverse
of ∂Fi/∂x j are called “Explicit”. In this paper a
natural system of explicit ODEs is derived from
the given system of nonlinear algebraic equations
(NAEs), by introducing a fictitious time, such that
it is a mathematically equivalent system in the
n +1-dimensional space as the original algebraic
equations system is in the n-dimensional space.
The iterative equations are obtained by apply-
ing numerical integrations on the resultant ODEs,
which do not need the information of ∂Fi/∂x j

and its inverse. The computational cost is thus
greatly reduced. Numerical examples given con-
firm that this fictitious time integration method
(FTIM) is highly efficient to find the true solutions
with residual errors being much smaller. Also, the
FTIM is used to study the attracting sets of fixed
points, when multiple roots exist.

1 Department of Mechanical and Mechatronic Engineer-
ing, Taiwan Ocean University, Keelung, Taiwan. E-mail:
csliu@mail.ntou.edu.tw

2 Center for Aerospace Research & Education, University
of California, Irvine

Keyword: Nonlinear algebraic equations, Itera-
tive method, Ordinary differential equations, Fic-
titious time integration method (FTIM)

1 Introduction

Numerical solution of algebraic equations is one
of the main aspects of computational mathemat-
ics. In many practical nonlinear engineering prob-
lems, the methods such as the finite element
method, boundary element method, finite volume
method, the meshless method, etc., eventually
lead to a system of nonlinear algebraic equations
(NAEs). Many numerical methods used in com-
putational mechanics, as demonstrated by Zhu,
Zhang and Atluri (1998), Atluri and Zhu (1998a),
Atluri (2002), Atluri and Shen (2002), and Atluri,
Liu and Han (2006) lead to the solution of a sys-
tem of linear algebraic equations for a linear prob-
lem, and of an NAEs system for a nonlinear prob-
lem. Collocation methods, as those used by Liu
(2007a, 2007b, 2007c, 2008a) for the modified
Trefftz method of Laplace equation also need to
solve a large system of algebraic equations.

Over the past forty years two important contri-
butions have been made towards the numerical
solutions of NAEs. One of the methods has
been called the “predictor-corrector” or “pseudo-
arclength continuation” method. This method has
its historical roots in the embedding and incre-
mental loading methods which have been success-
fully used for several decades by engineers to im-
prove the convergence properties when an ade-
quate starting value for an iterative method is not
available. Another is the so-called simplical or
piecewise linear method. The monographs by All-
gower and Georg (1990) and Deuflhard (2004) are
devoted to the continuation methods for solving
NAEs.
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In this paper we introduce a novel continuation
method, by embedding the NAEs into a system
of nonautonomous first order ODEs (FOODEs).
To motivate the present approach, we consider a
single NAE:

F(x) = 0. (1)

In the above equation, we only have an indepen-
dent variable x. We transform it into a FOODE by
introducing a time-like or fictitious variable t into
the following transformation of variable from x to
y:

y(t) = (1+ t)x. (2)

Here, t is a variable which is independent of x;
hence, ẏ = dy/dt = x. If ν �= 0, Eq. (1) is equiva-
lent to

0 = −νF(x). (3)

Adding the equation ẏ = x to Eq. (3) we obtain:

ẏ = x−νF(x). (4)

By using Eq. (2) we can derive

ẏ =
y

1+ t
−νF

(
y

1+ t

)
. (5)

This is a FOODE for y(t). The initial condition
for the above equation is y(0) = x, which is how-
ever an unknown and requires a guess.

We demonstrate the above idea by a simple alge-
braic equation:

F(x) = x−1 = 0, (6)

which has the solution x = 1.

From Eqs. (5) and (6) it follows that

ẏ =
1−ν
1+ t

y+ν . (7)

Suppose that y(0) = y0, then the solution of
Eq. (7) can be written as

y(t) =
y0 −1

(1+ t)ν−1 +1+ t. (8)

If we choose ν > 1, the above y(t) approaches
1 + t with a power of (1 + t)1−ν. At this moment

of convergence, by x = y/(1 + t) we can get the
solution x = 1 of Eq. (6). We note that x = 1 is
also the asymptotic of the following FOODE:

ẋ = − ν
1+ t

(x−1) = − ν
1+ t

F(x), (9)

where ẋ = dx/dt. The solution of Eq. (9) is

x(t) =
x0 −1

(1+ t)ν +1, (10)

where x(t = 0) = x0. The solution x = 1 is recov-
ered very fast from x(t) in Eq. (10), when ν > 0
is a large number.

Multiplying Eq. (5) by an integrating factor of
1/(1+ t) we can obtain

d
dt

(
y

1+ t

)
= − ν

1+ t
F

(
y

1+ t

)
. (11)

Further using y/(1+ t) = x, leads to

ẋ = − ν
1+ t

F(x). (12)

The roots of F(x) = 0 are fixed points of the
above equation. We should stress that the factor
−ν/(1+ t) before F(x) is important.

We may employ a forward Euler scheme on
Eq. (12) by starting from a chosen initial condi-
tion x0:

xk+1 = xk − hν
1+ tk

F(xk), (13)

where h is a time stepsize and xk = x(tk) is the
value of x at the k-th discrete time tk.

Suppose that tk = k is an integer time with a time
increment h = 1, then we have

xk+1 = xk − ν
1+k

F(xk). (14)

This bears certain similarity with the famous
Newton method for Eq. (1):

xk+1 = xk − F(xk)
F ′(xk)

. (15)

But it can be seen that when there exists a dan-
ger in the Newton method of dividing by a zero
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F ′(xk), the algorithm in Eq. (14) is always work-
able. If the function F is bounded, the algo-
rithm (14) guarantees that the solution can be ap-
proached.

Now we turn to the discussions of the following
algebraic equations:

Fi(x1, . . . ,xn) = 0, i = 1, . . .,n. (16)

The Newton method for these equations is given
by

xk+1 = xk − [B(xk)]−1F(xk), (17)

where we use x := (x1, . . . ,xn)T and F :=
(F1, . . .,Fn)T to represent the vectors, and B is an
n × n matrix with its i j-th component given by
∂Fi/∂x j.

The Newton method has a great advantage that
it is quadratically convergent. However, it still
has some drawbacks of not being easy to guess
the initial point, the computational burden of
[B(xk)]−1, and F being required to be differen-
tiable. Some quasi-Newton methods are thus de-
veloped to overcome these defects of the Newton
method; see the discussions by Broyden (1965),
Dennis (1971), Dennis and More (1974, 1977),
and Spedicato and Huang (1997).

Davidenko (1953) was the first who developed a
new idea of homotopy method to solve Eq. (16)
by numerically integrating

ẋ(t) = −H−1
x Ht(x, t), (18)

x(0) = a, (19)

where H is a homotopic vector function, for ex-
ample, H = (1−t)(x−a)+tF(x), and Hx and Ht

are respectively the partial derivatives of H with
respect to x and t. This theory is later refined
by Kellogg, Li and Yorke (1976), Chow, Mallet-
Paret and Yorke (1978), Li and Yorke (1980), and
Li (1997). At the same time, Hirsch and Smale
(1979) also derived a continuous Newton method
governed by the following differential equation:

ẋ(t) = −B−1(x)F(x), (20)

x(0) = a. (21)

It can be seen that the ODEs in Eqs. (18) and (20)
are difficult to calculate, because they all include

an inverse matrix. Below we will develop a new
ODEs system, which is equivalent to the original
equation (16).

2 A fictitious time integration approach

2.1 Transformation into an ODEs system

First we propose the following variable transfor-
mation:

yi(t) = (1+ t)xi, i = 1, . . . ,n, (22)

and multiply Eq. (16) by a coefficient −ν �= 0:

0 = −νFi(x1, . . . ,xn). (23)

Using Eq. (22) we have

0 = −νFi

(
y1

1+ t
, . . . ,

yn

1+ t

)
. (24)

Recalling that ẏi = xi by Eq. (22), and adding it on
both the sides of the above equation we obtain

ẏi = xi −νFi

(
y1

1+ t
, . . . ,

yn

1+ t

)
. (25)

Then, by using xi = yi/(1 + t), we can change
Eq. (16) into an ODEs system:

ẏi =
yi

1+ t
−νFi

(
y1

1+ t
, . . . ,

yn

1+ t

)
. (26)

Finally, multiplying each equation by the integrat-
ing factor 1/(1 + t) and using Eq. (22) again we
obtain

ẋi =
−ν
1+ t

Fi(x1, . . . ,xn), i = 1, . . . ,n. (27)

It can be seen that this ODEs system is nonau-
tonomous and is much simpler than those in
Eqs. (18) and (20).

Furthermore, in terms of a logarithmic time scale

τ = ln(1+ t), (28)

Eq. (27) can be recast into a more elegant form:

dxi

dτ
= −νFi(x1, . . .,xn), i = 1, . . .,n. (29)

The above idea was first proposed by Liu (2008b)
to treat an inverse Sturm-Liouville problem by
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transforming an ODE into a PDE. Then, Liu and
his coworkers [Liu (2008c, 2008d); Liu, Chang,
Chang and Chen (2008)] extended this idea to de-
velop new method for estimating parameters in
the inverse vibration problems.

Eq. (22) is not the unique way to transform the
algebraic equations (16) into the ODEs. We can
adopt

yi(t) = q(t)xi, i = 1, . . . ,n, (30)

and a similar derivation leads to

ẋi =
−ν
q(t)

Fi(x1, . . .,xn), i = 1, . . .,n. (31)

The requirements on q(t) are that they be differ-
entiable and q(0) = 1. A special case is q(t) = 1
and ν = −1, and then we have

ẋi = Fi(x1, . . . ,xn). (32)

Deuflhard (2004) has called the above equation a
pseudo-transient continuation method. However,
this equation is hard to work and usually leads to
wrong solutions of Fi = 0.

From Eq. (29) we can understand that the so-
called steady state must be considered in the log-
arithmic time scale τ = ln(1 + t), because this
equation is no more a nonautonomous one as
Eq. (27) is. In the logarithmic time scale, if
the motion of xi approaches a steady state, i.e.,
dxi/dτ = 0, then the roots are reached. In this pa-
per we focus on using Eq. (27) as our tool to com-
pute the roots of algebraic equations. This is the
most simple choice of q(t) = 1+t to meet the just
mentioned requirements of q(t). However, other
choices are possible if they can provide better be-
havior than the present one.

2.2 GPS for differential equations system

As was done in Eq. (14), we may employ the Eu-
ler method for Eq. (27), and using h = 1, to obtain
an iterative method to calculate the solutions of
algebraic equations:

xk+1
i = xk

i −
ν

1+k
Fi(xk

1, . . . ,x
k
n), i = 1, . . . ,n. (33)

However, we find that this method is not so good,
because sometimes h = 1 may be too large to
cause over-flow of the values of xi.

Therefore we develop a more stable group pre-
serving scheme (GPS) given as follows. Upon let-
ting x = (x1, . . . ,xn)T, and letting f denote a vector
with its i-th component being the right-hand side
of Eq. (27) we can write Eq. (27) a vector form:

ẋ = f(x, t) =
−ν
1+ t

F(x), x ∈ R
n, t > 0, (34)

where n is the number of algebraic equations.

A GPS can preserve the internal symmetry group
of the considered ODEs system. Although we
do not know previously the symmetry group of
differential equations system, Liu (2001) has em-
bedded it into an augmented differential equations
system, which concerns with not only the evolu-
tion of state variables themselves but also the evo-
lution of the magnitude of the state variables vec-
tor. We note that

‖x‖=
√

xTx =
√

x ·x, (35)

where the dot between two n-dimensional vectors
denotes their inner product. Taking the derivatives
of both the sides of Eq. (35) with respect to t, we
have

d‖x‖
dt

=
ẋTx√
xTx

. (36)

Then, by using Eqs. (34) and (35) we can derive

d‖x‖
dt

=
fTx
‖x‖ . (37)

It is interesting that Eqs. (34) and (37) can be
combined together into a simple matrix equation:

d
dt

[
x

‖x‖
]

=

⎡
⎣ 0n×n

f(x,t)
‖x‖

fT(x,t)
‖x‖ 0

⎤
⎦[ x

‖x‖
]
. (38)

It is obvious that the first row in Eq. (38) is the
same as the original equation (34), but the in-
clusion of the second row in Eq. (38) gives us
a Minkowskian structure of the augmented state
variables of X := (xT,‖x‖)T, which satisfies the
cone condition:

XTgX = 0, (39)
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where

g =
[

In 0n×1

01×n −1

]
(40)

is a Minkowski metric, and In is the identity ma-
trix of order n. In terms of (x,‖x‖), Eq. (39) be-
comes

XTgX = x ·x−‖x‖2 = ‖x‖2−‖x‖2 = 0. (41)

It follows from the definition given in Eq. (35),
and thus Eq. (39) is a natural result.

Consequently, we have an n+1-dimensional aug-
mented differential equations system:

Ẋ = AX (42)

with a constraint (39), where

A :=

⎡
⎣ 0n×n

f(x,t)
‖x‖

fT(x,t)
‖x‖ 0

⎤
⎦ , (43)

satisfying

ATg+gA = 0, (44)

is a Lie algebra so(n,1) of the proper or-
thochronous Lorentz group SOo(n,1). This fact
prompts us to devise the GPS, whose discretized
mapping G must exactly preserve the following
properties:

GTgG = g, (45)

det G = 1, (46)

G0
0 > 0, (47)

where G0
0 is the 00-th component of G.

Although the dimension of the new system is
raised by one more, it has been shown that the
new system permits a GPS given as follows [Liu
(2001)]:

Xk+1 = G(k)Xk, (48)

where Xk denotes the numerical value of X at tk,
and G(k)∈ SOo(n,1) is the group value of G at tk.
If G(k) satisfies the properties in Eqs. (45)-(47),
then Xk satisfies the cone condition in Eq. (39).

The Lie group can be generated from A ∈ so(n,1)
by an exponential mapping,

G(k) = exp[hA(k)]

=

⎡
⎢⎣ In + (ak−1)

‖fk‖2 fkfT
k

bkfk
‖fk‖

bkfTk
‖fk‖ ak

⎤
⎥⎦ ,

(49)

where

ak := cosh

(
h‖fk‖
‖xk‖

)
, (50)

bk := sinh

(
h‖fk‖
‖xk‖

)
. (51)

Substituting Eq. (49) for G(k) into Eq. (48), we
obtain

xk+1 = xk +ηkfk, (52)

‖xk+1‖ = ak‖xk‖+
bk

‖fk‖ fk ·xk, (53)

where

ηk :=
bk‖xk‖‖fk‖+(ak −1)fk ·xk

‖fk‖2 . (54)

The group properties are preserved in this scheme
for all h > 0, and is called a group-preserving
scheme.

2.3 Runge-Kutta method

We have derived a GPS in the last section, which
is however a first-order numerical integration
scheme. In order to increase the accuracy in the
integration of Eq. (34) sometimes we may employ
the fourth-order Runge-Kutta method (RK4) by
the following process:

xk+1 = xk +
h
6
(f1 +2f2 +2f3 + f4), (55)

where

f1 = f(xk, tk),
f2 = f(xk +h/2f1, tk +h/2),
f3 = f(xk +h/2f2, tk +h/2),
f4 = f(xn +hf3, tk +h).
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2.4 Numerical procedure

Starting from an initial value of x(0) which can be
guessed in a rather free way, we employ the above
GPS or RK4 to integrate Eq. (34) from t = 0 to a
selected final time t f . In the numerical integration
process we check the convergence of xi at the k-
and k+1-steps by

n

∑
i=1

(xk+1
i −xk

i )
2 ≤ ε2, (56)

where ε is a given convergent criterion. If at a
time t0 ≤ t f the above criterion is satisfied, then
the solution of xi is obtained. In practice, if a suit-
able t f is selected we find that the numerical so-
lution is also approached very well to the true so-
lution, even the above convergent criterion is not
satisfied before the time t < t f . A suitable coef-
ficient ν introduced in Eq. (27) can increase the
stability of numerical integration, and speeds up
the rate of convergence.

In particular we would emphasize that the present
method is a new fictitious time integration method
(FTIM), which can calculate the solution very sta-
bly and effectively. Below we give numerical ex-
amples to display some advantages of the present
FTIM.

3 Numerical tests of FTIM by examples

In this section we will apply the new method of
FTIM on both single, as well as multiple nonlin-
ear algebraic equations, and sometimes compare
it with the Newton method (NM).

Before embarking the numerical tests we use the
following case to compare the FTIM and continu-
ous Newton method:

x2 −1 = 0. (57)

Of course, it has two roots x = −1 and x = 1.

From Eq. (20) we have

ẋ = −x2 −1
2x

. (58)

Similarly, from Eq. (12) we have

ẋ = −ν(x2 −1)
1+ t

. (59)

While the integral of the first equation (58) leads
to

x2 = 1+(x2
0 −1)e−t , (60)

the integral of the second equation (59) leads to

x−1
x+1

=
x0 −1
x0 +1

(1+ t)−2ν, (61)

where x0 is an initial condition.

It is obvious that Eq. (60) quickly approaches x2 =
1 when t increases. However, because x2 is not
a monotonic function, it cannot take the inverse
of Eq. (60) to find x. Therefore, by applying a
numerical integration method on Eq. (58) we need
to decide which one of

x = ±
√

1+(x2
0 −1)e−t (62)

is selected.

Conversely, from Eq. (61) we have

x → 1, t → ∞, if ν > 0, (63)

x →−1, t → ∞, if ν < 0. (64)

The above convergence speed is dependent on the
value of ν . If we choose ν > 0 the FTIM will
lead to a unique solution x = 1, no matter what x0

is selected; on the other hand, if we choose ν < 0
the FTIM will lead to a unique solution x = −1,
no matter what x0 is selected. The convergence
speed of FTIM is 2ν power of t, which is slower
than the exponential convergence of Eq. (62), but
its advantage is that we have a unique solution:
x = 1 if ν > 0, and x = −1 if ν < 0. But the
continuous NM cannot find these two solutions.

3.1 Example 1

We first consider a simple algebraic equation:

F(x) = x3 −3x2 +2x = 0. (65)

The roots are 0, 1 and 2.

First we investigate the behavior in first 20 steps
by tracing the paths in the plane of (xk,xk+1). As
shown in Fig. 1(a), starting from x =−0.5 the NM
tends to the first root of x = 0 very fast, while the
FTIM with ν = 1.5 tends to the third root x = 2
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with an approximation value of 1.9996. It is in-
teresting that when ν = 1.6 the FTIM tends to the
second root of x = 1 exactly, and when ν = 1.7
the FTIM tends to the first root of x = 0 with a
numerical value of −4.1×10−7.

(a)

(b)

NM

FTIM

FTIM

NM

FTIM

Figure 1: Comparing the iteration paths of Exam-
ple 1 by FTIM and NM.

Next we start from x = 0.55. When the FTIM with
ν = −2.5 tends to x = 1 with a high accuracy of
0.999999992 and with ν = 2 tends to x = 0 with a
value of 3.1×10−7 as shown in Fig. 1(a), the NM

goes through a large range in the plane as shown
seperately in Fig. 1(b), and then tends to the third
root of x = 2.

The above demonstration indicates that the solu-
tion by FTIM with a suitable choice of ν can be
very accurate even only through a few iterations.
Between two roots with a same starting point the
FTIM under different sign of ν tend to different
roots almost exactly.

3.2 Example 2

Then we consider a system of two algebraic equa-
tions in two-variables [Hirsch and Smale (1979)]:

F1(x,y) =x3 −3xy2 +a1(2x2 +xy)+b1y2

+c1x+a2y

=0,

(66)

F2(x,y) =3x2y−y3 −a1(4xy−y2)+b2x2 +c2

=0.

(67)

The parameters used in this test are listed in Table
1. For these problems the initial guesses are re-
spectively (x,y) = (5,5), (x,y) = (0.25,0.1) and
(x,y) = (−1,−1).
For problem 1 there are other solutions given by
(x,y) = (50.46504,−37.2634179), and (x,y) =
(36.045402,36.80750808). For the former solu-
tion the parameters we use are given by (ν ,h,ε)=
(0.1,0.0001,10−10), and the initial point is
(50,−30). Through 1341 iterations the result is
obtained. For the latter solution the parameters
are given by (ν ,h,ε) = (0.01,0.01,10−10), and
the initial point is (40,20). Through 1474 itera-
tions, the result is obtained.

For a vision of the convergent paths we also plot-
ted the orbits of (x,y) for the above three prob-
lems in Figs. 2(a), 2(b) and 2(c), respectively. In
Fig. 2(a) the left-side corresponds to the first root,
while the right-side is for the second root. It can
be seen that the first fixed point is a node, while
the second one is a focus; similarly, the third fixed
point is a focus. There appears a zig-zag of the
path for problem 2; however, it spends only 52 it-
erations to reach a highly accurate solution of the
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Table
1:

T
he
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eters

and
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Problem
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Problem
3
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6
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5,1

.06×
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8)

(a)

(b)

(c)

Figure 2: Two-dimensional solution orbits of Ex-
ample 2 for three different problems.

roots with errors in the order of 10−10. The third
problem is hard to solve because there appears a
much large coefficient a1 = 200 than others. As
reported by Hsu (1988), he could not calculate the
third problem by using the homotopic algorithm
with a Gordon-Shampine integrator, the Li-Yorke
algorithm with Euler predictor and Newton cor-
rector, and the Li-Yorke algorithm with Euler pre-
dictor and quasi-Newton corrector.

Hirsch and Smale (1979) used the continuous
Newton algorithm to calculate the above three
problems. For the first problem they obtained
(x,y) = (36.0454,36.8056). However, insert-
ing it into F1 and F2 we find that (F1,F2) =
(13.315,3.675), which indicates that the result
obtained by Hirsch and Smale (1979) is not
an accurate root of Eqs. (66) and (67). For
the second problem Hirsch and Smale (1979)
obtained (x,y) = (39.0207,38.2417). Insert-
ing it into F1 and F2 we find that (F1,F2) =
(−0.339,−0.117), which indicates that the result
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obtained by Hirsch and Smale (1979) is not ac-
curate. Finally, we check the third problem, of
which Hirsch and Smale (1979) obtained (x,y) =
(0.5115,197.936). Inserting it into F1 and F2 we
find that (F1,F2) = (7.477,26.964), which indi-
cates again that the result obtained by Hirsch and
Smale (1979) is not an accurate root of Eqs. (66)
and (67).

For problem 1 we have found three roots as shown
above. It is interesting to investigate the attract-
ing set of each fixed point in the plane of ini-
tial conditions of (x(0),y(0)). Starting from any
initial condition in the domain of −60 < x(0) <
60, − 40 < y(0) < 40 we apply the FTIM un-
der a converegnt criterion of ε = 10−7, and with
ν = 0.01 and h = 0.001 to find its terminal lo-
cation, and determines which attracting set it be-
longs by a small disk with a ceneter on each fixed
point. The most points in the left-side of Fig. 3
as shown by the diamonds are attracted by the
fixed point (−50.3971,−0.8042). At the right-
side there are two fixed points (50.465,−37.263)
and (36.045,36.808). The solid circular points as
shown in Fig. 3 are the attracting set of the for-
mer one, while the square points are the attracting
set of the latter one. This result reveals that the
dynamics of the FTIM is rather simple, and it is
convenient for us to choose suitable initial con-
ditions to find the different roots. As we know
the dynamics of Newton method is very complex,
which usually makes the selection of initial con-
dition being sensitive and difficult.

3.3 Example 3

Then we study the following system of two alge-
braic equations [Spedicato and Hunag (1997)]:

F1(x,y) = x−y2 = 0, (68)

F2(x,y) = (y−1)2(y−2)2 +(x−y2)2 = 0. (69)

The two real roots are (x,y) = (1,1) and (x,y) =
(4,2).
In this test of the FTIM we study the attracting
sets of these two fixed points. All nodes of a reg-
ular grid of 50 by 50 points with side length 5
in the region of [0,5]× [0,5] are classified accor-
ing to which fixed point is tended. In Fig. 4 the

x (0)

y(
0)

Figure 3: The attracting sets for three different
fixed points of problem 1 in Example 2.

square points are those attracted by the the fixed
point (x,y) = (1,1), while the triangular points
are those attracted by the the fixed point (x,y) =
(4,2). Under the convergent criterion ε = 10−4,
some points in the blank part of Fig. 4 are not con-
vergent to any of the above fixed points.

x (0)

y(
0)

Figure 4: The attracting sets for two different
fixed points of Example 3.
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3.4 Example 4

We consider a system of three algebraic equations
in three-variables:

F1(x,y, z) = x+y+ z−3 = 0, (70)

F2(x,y, z) = xy+2y2 +4z2 −7 = 0, (71)

F3(x,y, z) = x8 +y4 + z9 −3 = 0. (72)

Obviously x = y = z = 1 is the solution.

For this case we use a large ν = 10 to speed
up the rate of convergence. In order to in-
crease the accuracy we employ the RK4 method
by using a small time stepsize h = 0.01, and
a stringent convergent criterion with ε = 10−9

is used. Starting from an initial value of
(x,y, z) = (0.5,0.6,0.6), through 1264 iterations
the orbit converges to the solution (x,y, z) =
(1.000000037,1.00000004,0.999999955), which
is very near the true solution. The present method
converges much faster than the above mentioned
homotopic methods with the computational time
smaller than 0.1 sec by using a PC586.

Because we do not use the steady-state concept
in our formulation of the ODEs in Eq. (34), the
final time spent by the present approach is not too
long. For example, in this case the final time is
t f = 1264×0.01 = 12.64.

3.5 Example 5

Now we consider a test example given by Roose,
Kulla, Lomb and Meressoo (1990):

Fi = 3xi(xi+1 −2xi +xi−1)+
1
4
(xi+1 −xi−1)2,

(73)

x0 = 0, xn+1 = 20. (74)

Initial value is fixed to be xi = 10, i = 1, . . .,n as
that used by Spedicato and Huang (1997).

For this case we use a large ν = −100 to speed
up the rate of convergence, which needs 2381 it-
erations with a time stepsize h = 0.0002 for the
RK4 method. When the convergent criterion is
given by 10−15, the residual error (∑n

i=1 F2
i )1/2 of

numerical solution is about 1.72×10−13. This is
equivalent to spending a time of 2381×0.0002 =
0.4762 that the dynamical system of Eq. (34)

reaches the fixed point, which is recorded in Table
2.

As compared with the methods reported by Spedi-
cato and Huang (1997) for the Newton-like meth-
ods, the present approach is more accurate and
time saving, where the computational time is
smaller than 0.1 sec by using a PC586. For n = 50
the numerical solutions are plotted in Fig. 5(a),
where the error of each Fk is shown in Fig. 5(b).
The residual error is about 5.83×10−12.

k

xk

Er
ro

r o
f 
F

k

k

(a)

(b)

Figure 5: For Example 5 with n = 50 the numeri-
cal solutions are plotted.

3.6 Example 6

In this example we apply the FTIM to solve the
following boundary value problem [Liu (2006)]:

u′′ =
3
2

u2, (75)

u(0) = 4, u(1) = 1. (76)

The exact solution is

u(x) =
4

(1+x)2 . (77)
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Table 2: The numerical solutions of Example 5 with n = 10

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

3.083 5.383 7.395 9.240 10.969 12.612 14.186 15.705 17.176 18.606

By introducing a finite difference discretization of
u at the grid points we can obtain

Fi =
1

(Δx)2 (ui+1−2ui +ui−1)− 3
2

u2
i , (78)

u0 = 4, un+1 = 1, (79)

where Δx = 1/(n+1) is the grid length.

Under the following parameters n = 49, h =
0.001, ν = −0.3 and ε = 10−10 we compute the
roots of the above system, and compare them with
the exact solutions in Fig. 6(a), which can be seen
that the error as shown in Fig. 6(b) is very small
in the order of 10−4.

x

u

x

(a)

(b)

Numerical

Exact

Figure 6: Applying the FTIM to a boundary value
problem: (a) comparing numerical and exact so-
lutions, and (b) displaying the numerical error.

3.7 Example 7

In this example we apply the FTIM to solve the
following boundary value problem of nonlinear
elliptic equation [Atluri and Zhu (1998a, 1998b);
Zhu, Zhang and Atluri (1998, 1999)]:

Δu(x,y)+ω2u(x,y)+εu3(x,y) = p(x,y). (80)

The exact solution is

u(x,y) =
−5
6

(x3 +y3)+3(x2y+xy2). (81)

The exact p can be obtained by inserting the above
u into Eq. (80).

By introducing a finite difference discretization of
u at the grid points we can obtain

Fi, j =
1

(Δx)2 (ui+1, j −2ui, j +ui−1, j)

+
1

(Δy)2 (ui, j+1 −2ui, j +ui, j−1)

+ω2ui, j +εu3
i, j − pi, j , (82)

where Δx = 1/(n + 1) and Δy = 1/(n + 1) are
grid lengths. The boundary constraints can be ob-
tained from the exact solution in Eq. (81).

Under the following parameters n = 29×29, h =
0.0005, ν = −2, ε = 10−5, ω = 1 and ε = 0.001
we compute the roots of the above system, and
compare them with the exact solutions. Starting
from an initial value of ui, j = −0.1, the FTIM
converges within 5488 steps. At the point y0 =
0.75 the error of u was plotted with respect to x in
Fig. 7 by the dashed line, of which the maximum
error is about 5.4×10−6. At the point x0 = 0.5 the
error of u was plotted with respect to y in Fig. 7
by the solid line, of which the maximum error is
about 4.4×10−6. For this highly nonlinear prob-
lem the FTIM is effective and gives very small
error of the numerical solution.

4 Conclusions

Since the work of Newton, iterative algorithms
were developed by many researchers, extending
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x y

Error of u(x , y0)

Error of u(x 0, y)

Figure 7: Applying the FTIM to a nonlinear el-
liptic boundary value problem, the errors are very
small.

to continuous type by introducing an extra ad hoc
artificial time. However, those ODEs are not in-
timately related to the original algebraic equa-
tions. The present paper very simply transforms
the original nonlinear algebraic equations into an
evolutionary system of equations by introducing a
fictitious time, and had adding a coefficient to en-
hance the stability of numerical integration of the
resulting ODEs and to speed up the convergence
to the true roots. The main idea presented here
is that the resulting system of ODEs is mathe-
matically equivalent to the original equations, and
no approximation is made. Hence, the present
FTIM can work very effectively and accurately
for the solution of nonlinear algebraic equations.
Because no inverse of a matrix is required, the
present method is very time efficient. Seven nu-
merical examples were worked out, including the
analysis of attracting sets and convergent paths.
Some are compared with exact solutions revealing
that high accuracy can be achieved by the FTIM.
The new method is also applicable to the solutions
of boundary value problems of elliptic type equa-
tion by discretizing them into high-dimensional
nonlinear algebraic equations, revealing a high
performance than other solvers.
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Computational Modeling of Impact Response with the RG Damage Model and the
Meshless Local Petrov-Galerkin (MLPG) Approaches

H. T. Liu1, Z. D. Han1, A. M. Rajendran2, S. N. Atluri3

Abstract: The Rajendran-Grove (RG) ceramic damage
model is a three-dimensional internal variable based con-
stitutive model for ceramic materials, with the consider-
ations of micro-crack extension and void collapse. In the
present paper, the RG ceramic model is implemented into
the newly developed computational framework based on
the Meshless Local Petrov-Galerkin (MLPG) method,
for solving high-speed impact and penetration problems.
The ability of the RG model to describe the internal dam-
age evolution and the effective material response is in-
vestigated. Several numerical examples are presented,
including the rod-on-rod impact, plate-on-plate impact,
and ballistic penetration. The computational results are
compared with available experiments, as well as those
obtained by the popular finite element code (Dyna3D).

keyword: Rajendran-Grove ceramic model, Material
modeling, Ceramic damage, Meshless method, MLPG,
High-speed impact, Penetration and perforation

1 Introduction

Ceramic materials are an important category of materials
that have been widely used in armor elements, engine tur-
bine blades and other structural components, because of
their enhanced dynamic compressive strength and high
temperature properties. Accurately modeling the consti-
tutive behavior of ceramics, including their damage and
failure, is essential in the device-design, and their de-
ployment for dynamic structural and armor applications.
Recently, Rajendran and Grove (Rajendran, 1994; Ra-
jendran and Grove, 1996) proposed a three-dimensional,
internal state variable based constitutive model (RG ce-
ramic damage model) for ceramic materials, which incor-
porated both micro-crack propagation and void collapse.
The proposed RG ceramic damage model has been im-

1 Knowledge Systems Research, LLC, Forsyth, GA 30253
2 US Army Research Office (ARO), RTP, NC
3 Center for Aerospace Research & Education, University of Cali-
fornia, Irvine

plemented into EPIC code for investigating the model’s
ability to describe the response of pure alumina (AD995)
subjected to various stress/strain loading conditions (Ra-
jendran and Grove, 2002).

In the present paper, the RG ceramic damage model
is implemented into the newly developed computa-
tional code based on the Meshless Local Petrov-Galerkin
(MLPG) method. The MLPG method is a truly mesh-
less approach that establishes both the trial and test func-
tions in local subdomains. Because of the total elim-
ination of the mesh, it is a promising method in solv-
ing high-speed contact, impact and penetration problems
with severe material-distortion. The detailed description
of the MLPG and its applications can be found in the
authors’ other papers. For comparison and verification
purpose, the RG model has also been implemented into
the three-dimensional computational hydrodynamic code
Dyna3D. Several numerical examples are solved, using
either the Dyna3D or the MLPG method, with RG ce-
ramic damage model implemented in them. Several nu-
merical simulations are conducted: rod-on-rod impact,
plate-on-plate impact, and the ballistic impact and pene-
tration. The simulation results obtained from Dyna3D,
MLPG and available experiments are compared. For
completeness purpose, a brief introduction of the RG ce-
ramic damage model is included.

2 Rajendran-Grove Ceramic Damage Model

In the Rajendran-Gove ceramic model, the following as-
sumptions are made: 1) randomly distributed and ori-
ented micro-cracks are pre-existing in the materials, 2)
plastic flow occurs when the materials are shocked above
the HEL (Hugoniot Elastic Limit), 3) pore collapse is due
to the plastic flow in the matrix surrounding the pores, 4)
no plastic flow happens when the material is under ten-
sile loading, 5) micro-cracks propagate under both com-
pression and tension, and 6) pulverization occurs under
compressive loading, when the accumulated micro-crack
density reaches a critical value. The micro-crack dam-
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age is described using a dimensionless damage density
parameter in terms of the maximum micro-crack size and
the average number of micro-cracks per unit volume. The
damage evolution in terms of crack growth is formulated
based on a generalized Griffith criterion (Griffith, 1920).
The stiffness reduction due to micro-cracking is modeled
using the analytical formulation from Margolin (1983)
and Budiansky and O’Connell (1976). The pore collapse
effects are modeled using viscoplastic equations derived
from Gurson’s pressure dependent yield function (Gur-
son, 1977). In the following sections, the Rajendran-
Grove ceramic model is briefly reviewed.

2.1 Constitutive Relationships

The total strain εi jis decomposed into the elastic part εe
i j

and plastic part εp
i j as

εi j = εe
i j +εp

i j (1)

Here, the elastic strain includes the elastic strain of the
intact matrix material and the strain due to micro-crack
opening/sliding. The plastic strain is associated with pore
collapse and occurs only when the applied pressure ex-
ceeds the pressure at the Hugoniot Elastic Limit (HEL).
The total stress σi j is decomposed into deviatoric stress
Si j and pressure P as

σi j = Si j −Pδi j (2)

The pressure is calculated through the Mie-Gruneisen
equation of state which given by

P =
[
PH (1−0.5Γη)+Γρ0 (I − I0)

]
(3)

where

PH = Kγ
(
β1η+β2η2 +β3η3) (4)

In the above equations, β1, β2 and β3 are empirical pa-
rameters; Γ is the Mie-Gruneisen parameter; Kγ = K/K
is the bulk modulus reduction ratio with K the bulk mod-
ulus for the intact matrix and K the effective bulk mod-
ulus for the micro-crack containing material (Margolin,
1983; Budiansk and O’Connell 1976). Furthermore, ρ0

is the initial material density; I0 and I are the internal en-
ergy at the initial and current states, respectively. The

engineering volumetric strain, with the consideration of
the voids, is defined as

η =
(1− f0)V0

(1− f )V
−1 (5)

Where V0 and V are the volumes of the initial and cur-
rent states; f0 and f are the initial and current porosity
densities, respectively.

The deviatoric stress is related to the deviatoric elastic
strain ee

i j , as

Si j = 2RgGee
i j (6)

Here G is the effective shear modulus for micro-crack
containing material (Margolin, 1983; Budiansky and
O’Connell, 1976) and Rg is the correction factor for shear
modulus due to the existence of porosity, which is ex-
pressed as

Rg = (1− f )
[
1− (6K +12G) f

(9K +8G)

]
(7)

with G the shear modulus for the intact matrix. The
porosity density is assumed to decrease, due to void col-
lapsing at pressures above the HEL, as

ḟ = (1− f ) ε̇p
v (8)

where εp
v the plastic volumetric strain, and the dot above

a symbol implies the temporal derivative.

When the materials are shocked above the HEL (Hugo-
niot Elastic Limit), plastic flow occurs. In the current
model, Gurson’s pressure dependent yield function (Gur-
son, 1977) when considerations of the porosity are in-
cluded, namely

F =
3J2

Y 2 +2 f cosh

(
3P
2Y

)
− f 2 −1 = 0 (9)

with J2 = 0.5Si jSi j. A simplified Johnson-Cook strain
rate dependent strength model (Johnson and Cook, 1985)
is used and can be expressed as

Y = C1

(
1+C3 ln

ε̇p

ε̇0

)
(10)

where C1 and C3 are model constants. ε̇p is the equivalent
plastic strain rate and ε̇0 is the reference strain rate, which
is assumed to be 1 in the current model.
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Figure 1 qualitatively shows the effect of the void col-
lapse on the material response under a hydrostatic load-
ing/unloading condition predicted by the RG model.
With the increase of the compressive hydrostatic load-
ing, the voids start to collapse at point A. At point B, the
volume of the voids reduces to zero and the correspond-
ing porosity f becomes 0. During the unloading process,
at point C, the pressure reduces to zero, but the volumet-
ric strain does not go to zero due to the collapsed void
volume.

2.2 Damage Definition and Evolution

The micro-crack damage is measured in terms of a di-
mensionless micro-crack damage density γ, which is ex-
pressed as

γ = N∗
0a3 (11)

where N∗
0 is the average number of micro-flaws per unit

volume, and a is the maximum micro-crack size at the
current state. The initial values of N∗

0 and a0 are material
constants. For simplicity, it is assumed that no cracks nu-
cleate during the loading, and therefore the damage evo-
lution is represented by the growth of micro-crack size a,
which follows a generalized Griffith criterion (Griffith,
1920) as

ȧ =

{
0 ,Gs ≤ GC

n1CR

[
1−
(

GC
GS

)n2
]

Gs > GC
(12)

where CR is the Rayleigh wave speed, GC is the critical
strain energy release rate for micro-crack growth calcu-
lated from the fracture toughness KIC, Young’s modulus
E and Poisson’s ratio v as GC = K2

IC

(
1−v2

)
/E. GS is

the applied strain energy release rate. n1 and n2 are the
parameters controlling the crack growth rate. Four pa-
rameters are used for the micro-crack extension model:
n−1 and n−2 for crack sliding, and n+

1 and n+
2 for crack

opening. The applied strain energy release rates are cal-
culated in the principal directions, with σ1,σ2,σ3 being
the three principal stress components. For crack opening

G+
S =

4
(
1−v2

)
πE

max(0,σ1,σ2,σ3)
2 (13)

and for crack sliding

G−
S = max

(
G−

1 ,G−
2 ,G−

3

)
(14)
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Figure 1 : The hydrostatic loading/unloading of RG
model with void collapse

with

G−
i =

8
(
1−v2

)
a

πE (2−v)

{∣∣σ j −σk
∣∣

2
+min

[
0,µ

σ j +σk

2

]}2

(15)

In the above equation, i, j,k = 1,2,3 and i �= j �= k. µ is
the dynamic friction coefficient.

As an example, we show the shear loading response with
micro-crack evolution predicted by the RG model in Fig-
ure 2. With the increase of the applied shear loading, the
strain energy release rate goes beyond the critical energy
release rate at the point A, activating the micro-cracks
sliding. The micro-crack damage density γ increases pro-
portional to the growth of the micro-crack size and the
effective shear modulus in Eq. (6) decreases. Therefore,
a softening stage corresponding to the micro-cracks ex-
tension is form in this figure between point A and B.

2.3 Pulverization

When the micro-crack damage density γ reaches a critical
value (usually set as 0.75) under compressive loading, the
material becomes pulverized. The bulk and shear moduli
for the pulverized material are set to the corresponding
effective bulk and shear moduli at the pulverization point
as

Kp = K, Gp = G (16)

The pulverized material does not support any tensile
loading and the compressive strength of the pulverized
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material is described by the Mohr-Columb law as

Y =
{

0 ,P ≤ 0
α+βP ,P > 0

(17)

where α and β are model constants. The pressure is sim-
ply computed from the elastic volumetric strain εe

v as

P =
{

0 ,εe
v ≥ 0

−Kpεe
v εe

v < 0
(18)

2.4 Determination of Model Constants

In the Rajendran-Grove ceramic model, there are eight
material constants to describe the micro-crack behavior:
N∗

0 , a0, µ, n+
1 , n+

2 , n−1 , n−2 , and KIC. Usually, several ex-
periments like plate-on-plate and bar-on-bar impact tests
are needed to determine these constants for a specific ma-
terial. Rajendran and Grove (1996) conducted a sensi-
tivity study of the material constants and calibrated the
constants for several commonly used ceramic materials,
like SiC, B4C, TiB2, AD85, and AD995 (Rajendran and
Grove, 1996 and 2002; Grove, 1993). In the following
numerical simulations, the AD995 and AD85 ceramic
are used and the material constants that we employed are
listed in Table 1.

3 Meshless Local Petrov-Galerkin Method

Meshless Local Petrov-Galerkin Method (MLPG)
[Atluri and Zhu (1998), and Atluri (2004)] is a truly
meshless approach, in which both the trial and test
functions are established in local subdomains. As an
extension to the primitive MLPG method, Atluri Han,
and Rajendran proposed an MLPG mixed method to
simplify the formulation and improve the efficiency
and stability of the MLPG approach [Atluri, Han and
Rajendran (2004), Han, Rajendran and Atluri (2005)]. In
this MLPG mixed method, both displacement/velocity
gradients and displacements/velocities are interpolated
independently. Their compatibility is enforced only at
the nodal points. Therefore, the continuity requirement
of the trial function is reduced by one order, and the
second derivatives of the shape functions are eliminated.
This MLPG mixed method has been implemented to
solve static problems with large deformation [Atluri,
Han and Rajendran (2004)] and dynamic problems [Han,
Rajendran and Atluri (2005)]. Recently, the authors
have successfully applied the MLPG mixed method to

solve three-dimensional high-speed contact and impact
problems with large deformation [Han, Liu, Rajendran,
and atluri (2006)].

In this section, a brief introduction of the MLPG mixed
method is presented. Interested readers are encouraged to
refer to the above mentioned MLPG papers for detailed
formulations.

3.1 Local Nodal Interpolation

In the current implementation, the Moving Least Squares
(MLS) is adopted as the local nodal interpolation scheme
because of the reasonable accuracy, completeness, ro-
bustness and continuity of the MLS functions With the
MLS, a trail function u(x) can be expressed as

u(x) =
N

∑
I=1

ΦI(x)ûI (19)

where ûI and ΦI(x) are the fictitious nodal value and
shape function of node I, respectively. The shape func-
tions are obtained by minimizing the L2 norm of the
weighted distance between the trial function value and
its true values at nodal points. The explicit expressions
for the shape functions can be found in Atluri (2004).

In the mixed method, we interpolate the velocities vi, and
the velocity gradients vi, j , independently, using the same
shape functions, namely

vi(x) =
N

∑
J=1

ΦJ(x)vJ
i (20)

vi, j(x) =
N

∑
K=1

ΦK(x)vK
i, j (21)

The compatibility condition between the velocities and
velocity gradients is enforced only at the nodes by a stan-
dard collocation method, as

vi, j(xI) =
∂vi(xI)

∂x j
(22)

By interpolating the velocity gradients, as one of the key
features of the mixed method, we eliminate the differ-
entiation operations of the shape functions in the local
weak form integration. Therefore, the requirement of
the completeness and continuity of the shape functions
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Table 1 : The material constants for Rajendran-Grove model

 AD995 AD85 

Density ( 3/ cmg ) 3.89 3.42 

Shear Modulus (GPa) 156 88.0 

Initial Porosity 0 10% 

Material Strength Constants   

1C  (GPa) 2.3 4.0 

3C 0.2 0.029 

Equation of State Constants   

1  (GPa) 231 150.0 

2  (GPa) -169 150.0 

3  (GPa) 2774 150.0 

0.1 0 

Damage Model Parameters   
*

0N  ( 3
m ) 112 10 101.83 10

0a  ( m ) 20 0.58 

0.45 0.72 

1n 1.0 1.0 

2n 1.0 0.07 

1n 0.1 0.1 

2n 1.0 0.07 

ICK  ( mMPa ) 3.0 3.25 

Pulverized Material Constants   

 (GPa) 0 0.1 

 1.0 0.1 

is reduced by one-order, and thus, lower-order polyno-
mial terms can be used in the meshless approximations.
This leads to a smaller nodal influence size and speeds
up the calculation of the shape functions. The adoption
of the mixed method in our implementation greatly im-
proves the program efficiency.

3.2 Formulations for Finite Strain Problems

We adopted an updated Lagrangian formulation in our
implementation for solving the high-speed dynamic
problems. Let xi be the spatial coordinates of a mate-
rial particle in the current configuration. Let Ṡi j be the
Truesdell stress-rate (the rate of second Piola-Kirchhoff
stress as referred to the current configuration); and let σ̇J

i j
be the Jaumann rate of Kirchhoff stress (which is J times
the Cauchy stress, where J is the ratio of volumes). It is

known [Atluri (1980)]:

Ṡi j = σ̇J
i j −Dikσk j −σikDk j (23)

Here, Di j and Wi j are the symmetric and skew-symmetric
parts of the velocity gradient, respectively. Considering
a 3D domain Ω with a boundary ∂Ω, the rate forms of
the linear and angular momentum balances are [Atluri
(1980)]:

(Ṡi j +τikv j,k),i + ḟ j = ḃ j (24)

where, ḃ j = ρȧ j is the inertia force rate with ρ is the mass
density and ȧ j the acceleration rate. In a dynamic prob-
lem, ḟ j are appropriately defined in terms of the rate of
change of inertia forces and ( ),i = ∂( )/∂xi; xi are current
coordinates of a material particle. In Eq. (24), τi j is the
Cauchy stress in the current configuration.
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3.3 Local weak form with the large deformations

In the MLPG approaches, the weak form is established
over a local subdomain Ωs, which may have an arbitrary
shape, and contain a point x in question. In our imple-
mentation, the local weak form is established for a spher-
ical subdomain with the radius of r (we define it as the
test-function size), namely
Z

Ωs

[(Ṡi j +τikv j,k),i + ḟ j − ḃ j]wjdΩ = 0 (25)

where wj are the test functions. By applying the diver-
gence theorem, Eq. (25) may be rewritten in a symmetric
weak form, as:
Z

∂Ωs

(Ṡi j +τikv j,k)niwjdΓ

−
Z

Ωs

[(Ṡi j +τikv j,k)wj,i − ḟ jw j + ḃ j]dΩ = 0 (26)

wherein, the rate definition ṫ j = (Ṡi j + τikv j,k)ni , with ni

being the components of a unit outward normal to the
boundary of the local subdomain Ωs, in its current con-
figuration, is used. Thus the local symmetric weak form
can be rewritten as
Z

Ls

ṫiwidΓ+
Z

Γsu

ṫiwidΓ+
Z

Γst

ṫ iwidΓ

−
Z

Ωs

[(Ṡi j +τikv j,k)wj,i − ḟiwi + ḃ j)dΩ = 0 (27)

where Γsu is a part of the boundary ∂Ωs of Ωs, over which
the essential boundary conditions are specified. In gen-
eral, ∂Ωs = Γs ∪ Ls, with Γs being a part of the local
boundary located on the global boundary, and Ls is the
other part of the local boundary which is inside the solu-
tion domain. Γsu = Γs∩Γu is the intersection between the
local boundary ∂Ωs and the global displacement bound-
ary Γu; Γst = Γs ∩Γt is a part of the boundary over which
the natural boundary conditions are specified.

To simplify the integration and speed up the numerical
implementation, the Heaviside function is adopted as the
test function in our program. Thus, the local symmetric
weak form in Eq.(27) becomes

−
Z

Ls

ṫidΓ−
Z

Γsu

ṫidΓ+
Z

Ωs

ḃ jdΩ

=
Z

Γst

ṫ idΓ+
Z

Ωs

ḟidΩ (28)

4 Numerical Simulations

For the implementation of the Rajendran-Grove ceramic
damage model, a material subroutine is developed. To
maintain the stability of the explicit algorithm, an itera-
tive scheme based on a second-order diagonally implicit
Runge-Kutta method is employed to solve the coupled
differential equations of the constitutive model. This ma-
terial subroutine is linked to the Dyna3D (2000 version)
hydrodynamic code and the newly developed MLPG
mixed program. Numerical examples are conducted ei-
ther under the Dyna3D (finite element method) and the
meshless method (MLPG).

4.1 Beam Under Stretch and Rotation
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Figure 2 : The shear loading response of RG model with
micro-crack evolution
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Figure 3 : A beam under stretch and rotation

In the first example, we consider a beam undertaking a
uniaxial stretch in the x-direction, as shown in Figure 3.
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Figure 4 : The stress components of the beam under uni-
axial stretch and rotation
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Figure 5 : The stress components of the beam under uni-
axial stretch and rotation with micro-crack damage evo-
lution
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Figure 6 : Rod-on-rod impact test configuration
schematic
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Figure 7 : Axial stress history in the rod-on-rod impact

To demonstrate the consistency of the RG model in deal-
ing with large deformation problems, a rigid body rota-
tion in z-direction is added to the beam. The rotation
rate is set such that the beam will rotate a 90 degree in
z-direction after the simulation. The stretching and rota-
tion are applied slowly so that there is no inertia effect
and a quasi-static state is maintained. The Poisson’s ratio
is set to be zero during the simulations.

Figure 4 shows elastic stress response obtained with RG
model. The beam orientation rotates 90 degree with the
uniaxial stretching, and therefore the stress tensors are
rotated correspondingly. Figure 5 shows the same prob-
lem solved using RG model with micro-crack damage
evolution. With the increase of the uniaxial stretching,
the micro-crack opening is activated when the strain en-
ergy release rate goes beyond the critical energy release
rate. The stress drops due to the micro-crack damage
evolution.

4.2 Rod-on-Rod Impact

Recently, Simha (1998) conducted rod-on-rod impact ex-
periments at the impact velocity of 278 m/s, in which
both the striker and the target rods were made of AD995
ceramic. The striker rod was 5 cm long and 1.25 cm in di-
ameter, while the target rod was 10 cm long and 1.25 cm
in diameter. A stress gauge was embedded in the target
rod at the location of 2.5 cm from the free end to record
the axial stress history. Figure 6 shows the test configu-
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6 micro-seconds 

2 micro-seconds 

Figure 8 : Crack density profile in the rod-on-rod impact

ration. In this experiment, fracture initiates at the impact
end and propagates toward the gauge location. The mea-
sured peak stress from this experiment can be used in a
qualitative sense to validate the model constants under
uniaxial stress.

The same problem is simulated using Dyna3D with the
RG ceramic damage model. Three-dimensional finite el-
ement mesh is constructed and a quarter of the striker
and target rods are modeled by considering the configu-
ration symmetry. 49499 nodes and 254021 Tet4 elements
with the average nodal spacing of 0.5 mm are used in the
finite element model. The initial crack size is reduced
to a0 = 2.3µm to avoid premature crack extension and
catch the peak stress recorded in the experiment. Figure
7 compares the computed axial stress at the gauge loca-
tion with the experimental data and a good agreement is
obtained. A coarse mesh with average nodal spacing of
1 mm is used to re-simulate the same problem and the
result is shown in Figure 7. The calculated stress from
the coarse mesh increases slower than the one obtained
with fine mesh, due to the loss of the high-frequency
wave information of the stress wave. Figure 8 shows the
micro-crack density profile, with the darkness scales of
the micro-crack density. The micro-cracks begin to ex-
tend at the impact ends upon the collision of the striker
and target rods. With the propagation of the stress wave,
the micro-crack damage extends toward the free ends.

4.3 Plate-on-Plate Impact

Target Plate 

500 m/s

Flyer Plate 

Figure 9 : Plate-on-plate impact test configuration
schematic

In the simulated plate impact problem, two thin ceramic
plates collide at the velocity of 500 m/s (see Figure 9).
The flyer and target plates have the same diameter of 50
mm and their thicknesses are 4 mm and 8 mm, respec-
tively. Frictionless contact is assumed between the two
plates. Both the flyer and the target plates are made of
AD995 ceramic.

To simulate the described problem using the MLPG soft-
ware, 32058 nodes are used with an averaged nodal spac-
ing of 1 mm. The AD995 ceramic material is modeled
using Rajendran-Grove (RG) ceramic model. The mate-
rial constants for RG model are listed in Table 1. For
comparison purpose, the plate impact problem is also
solved, using the Dyna3D. The FEM modeling uses the
same nodal arrangement, and thus, 163698 Tet4 elements
are produced from these nodes.

Figure 10 reports the axial velocity profiles. In Figure
10(a), the axial velocities at the central points on the
free surfaces of the flyer and target plates are drawn, re-
spectively. The velocity of the flyer plate starts to de-
crease while the compressive wave initiated at the colli-
sion surface arrives at the free surface. The flyer veloc-
ity becomes positive representing the bouncing back of
the flyer plate. Similarly, the free surface of the target
plate begins to move when the first compressive wave ar-
rives at around 0.6 micro-seconds. This time is twice the
time taken for the wave to propagate to the flyer free sur-
face, which reflects the fact that the target plate is twice
as thick as the flyer plate. The speed changes due to the
arrivals of the second wave peak can be clearly observed
in the target free surface velocity profile. To investigate
the momentum exchange between the flyer and target
plates, the averaged axial velocities are drawn in Figure
10(b). The averaged velocity is obtained by the total mo-
mentum of the flyer or target plate, divided by the total
mass of the corresponding plate. At around 1.5 micro-
seconds, the momentum exchange completes, which rep-
resents the end of the collision process. The target plate
attains an averaged axial velocity of 270 m/s, while the
flyer plate bounces back at a velocity of 38 m/s. The ve-
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Figure 10 : (a) Axial velocities of the central points at the free surfaces of the flyer and target plates; and (b) the
averaged axial velocities of the flyer and target plates
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Figure 11 : Damage profiles of ballistic impact (a) 3.5 micro-seconds and (b) 10 micro-seconds

locity profiles calculated from Dyna3D are also shown
in the same figures. From Figure 10(a), similar velocity
histories are obtained from MLPG and Dyna3D and both
of them show the same wave arrival time. The results
from Dyna3D simulation are more oscillatory than the
ones from MLPG. It shows that MLPG is able to obtain
more stable results than the FEM, even while there are no
hourglass control or other artificial “fixes” involved in the
MLPG calculation. The averaged axial velocities com-
puted from Dyna3D are shown in Figure 10(b). From this
figure, it is seen that both the MLPG and Dyna3D results
strictly follow the conservation of momentum. Although
the Dyna3D calculation shows larger velocities for both
flyer and target plates after the contact, the difference of
the averaged velocities from MLPG and Dyna3D is in-
significant.

4.4 Ballistic Impact

To demonstrate the capacity of the RG model on simu-
lating the damage and penetration problems, a ballistic
impact problem is considered here. In this simulation, a
cylindrical tungsten projectile impacts with an AD85 ce-
ramic plate at the velocity of 1500 m/s. Both the length
and diameter of the projectile are 10 mm. The target ce-
ramic plate has a thickness of 5 mm and a diameter of
80 mm. The tungsten is modeled as elastoplastic with
the following material properties: density 16.98 g/cm3,
Young’s modulus 299.6 GPa, Possion’s ratio 0.21 and
yield strength 1.5 GPa. The target plate is modeled using
the Rajendran-Grove ceramic model, with the material
constants as listed in Table 1.

This problem is simulated using both the Dyna3D and
the MLPG. Figure 11 shows the damage profile from
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Figure 12 : Ballistic impact penetration

Dyna3D simulation, with the darkness referring to the
damage density. At 3.5 micro-seconds, damage begins
to form under and around the impact area. Inside these
areas, the compressive stress or shear stress increases
rapidly due to the collision, causing the strain energy re-
lease rate to go beyond the critical strain energy release
rate. Thus, the micro-cracks begin to growth inside these
areas. At 10 micro-seconds, these micro-cracks inside
the whole impact area grow and cause the damage to
accumulate very rapidly inside the whole impact area,
to form a perforation hole. Due the incapability of the
element-based method in dealing with severe distortion,
the Dyna3D simulation stops at the 10 micro-seconds.

The same problem is re-simulated by using the MLPG
method. The problem has been solved smoothly without
any mesh distortion problems, because of the advantages
of the truly meshless method. The whole penetration pro-
cess is simulated and the total solution time is 20 micro-
seconds. The final deformation is shown in Figure 12,
and the fragmentation is clearly formed after the projec-
tile penetrates the target plate. The detailed simulation
results and discussion is reported in the author another
paper [Han, Liu, Rajendran, and Atluri, (2006)].

5 Closing Remarks

The ability and accuracy of the constitutive model plays
an important role in the computational methodology.
The Rajendran-Grove ceramic damage model is capa-
ble of predicting the micro-crack and void damage evo-
lution, and the pulverization of ceramic materials. The
MLPG method, as a truly meshless approach, enables
a feasible computational framework for solving high-

speed dynamic problems with large deformation. The
current mixed method, as an extension to the primal
MLPG method, leads to a high-performance computa-
tional code, which can solve three-dimensional high-
speed impact and penetration problems. The numeri-
cal examples demonstrate the capability of the MLPG
method with RG ceramic damage model in solving the
important class of impact and penetration problems, in-
volving severe material deformation and fragmentation.
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The Optimal Radius of the Support of Radial Weights Used in Moving Least
Squares Approximation

Y.F. Nie1,2, S.N. Atluri2 and C.W. Zuo1

Abstract: Owing to the meshless and local character-
istics, moving least squares (MLS) methods have been
used extensively to approximate the unknown function of
partial differential equation initial boundary value prob-
lem. In this paper, based on matrix analysis, a sufficient
and necessary condition for the existence of inverse of
coefficient matrix used in MLS methods is developed
firstly. Then in the light of approximate theory, a prac-
tical mathematics model is posed to obtain the optimal
radius of support of radial weights used in MLS meth-
ods. As an example, while uniform distributed particles
and the 4th order spline weight function are adopted in
MLS method in two dimension domain and two kinds of
norms are used to measure error, optimal results for lin-
ear and quadratic basis are gained. Finally, the test data
verify that the optimal values are correct. The research
idea can be used in 3-dimension problems too.

keyword: MLS methods, Radius of support, Scaling,
Sobolev norm, Mathematics model, Matrix analysis, Ap-
proximate theory.

1 Introduction

Comparing with the radial basis function interpolation
approach, the moving least squares (MLS) method offers
another kind of efficient scattered data approximation es-
pecially if the number of point is large and the data val-
ues contain noise. The MLS method is a variation on the
classical least squares technique with the advantage al-
lowing the nearest neighbors of the evaluation point x to
influence the approximate value through a weight func-
tion with local compact support w(x, x j) : Rd ×Rd → R+

where x jis one of the given particles (nodes) in set PΩ =
{x j}n

j=1in the bounded domain Ω ⊂ Rd. That is for every

1 School of Science, Northwestern Polytechnical University, Xi’an
710072, China. E-mail: Yfnie@nwpu.edu.cn

2 Center for Aerospace Research & Education, University of Cali-
fornia at Irvine, Irvine, CA 92697, USA

point x we have to solve the following problem

min
s∈S

{
n

∑
j=1

[s(x j)− f j] 2w(x,x j)

}
, (1)

where S is a finite-dimensional linear space and f j =
f (x j) is the collected data. Weight function w(x,x j) with
the form w0

(∥∥x−x j

∥∥
2

/
r j
)

is generally used to simplify
the form of weight function and help forward the inde-
pendence of weight function on the dimension d of the
domain Ω. As function w0(r)has a compact support [0,
1], weight function w(x,x j)has a disc support with center
x j and radius r j. In this paper, we would like to take the
radius as a constant r for simplicity.

The MLS approximation has its origin in the early pa-
per [Lancaster and Salkauskas(1981)] with special cases
going back to [McLain(1974),and Shepard(1968)], and
some investigation about the approximation order is
given in paper [Farwig(1986)]. Now MLS methods have
emerged as the basis of numerous meshless (meshfree)
approximation methods that being suggested as an al-
ternative to the traditional finite element method in ref-
erences [Atluri (2004),and Babuska, Banerjee and Os-
born(2003), Liu, Han and Lu (2004)] and there referred.
Especially, the generalized moving least squares methods
is developed and successfully applied as a approxima-
tion methods to solve thin beam problem in paper [Atluri,
Cho, Kim(1999)].

As we know, one of the crucial steps to solve partial dif-
ferent equations system is the approximation to the un-
known field function appeared in the system, i.e. how
to ensure trial function being an effective approximation.
The influence factors existing in MLS method include
which kind of weight function w0 should be used and
how much the size of compact support of the weight
function r should be. Reference [Atluri (2004)] suggests
to use 4th order spline type weight function in order to
give smoothness to the derivatives of the trail function.
About the second factor there is no definite answer up to
now as our known.
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In this paper, after a brief introduction of the MLS ap-
proximation in this section, a sufficient and necessary
condition about the existence of the inverse of coefficient
matrix of linear equations system used in MLS method
is posed and proved when uniform distributed particle is
exploited in section 2. The conclusions about the applica-
tion in the case of linear and quadratic basis are specified
in section 3. Then the model of optimal radius of the sup-
port of radial weight function is developed and solved in
section 4 and 5 respectively. Some numerical tests about
the optimal radius when linear bases and quadrics base
being used are given in section 6. And the conclusions
are shown in the end.

2 Sufficient and necessary

Let’s assume that the finite dimension of linear space S
used in formula (1) is expressed as

S = span{p1(x), p2(x), · · · , pm(x)} ,

i.e. a series of linear independent functions
p1(x), p2(x), · · · , pm(x) defined on Rd are the basis
of linear space S, and for any s ∈ S there exist a group of

coefficients {ai}m
i=1 ⊂ R such that s =

m
∑

i=1
aipi(x) . Then

for any given point x ∈ Ω ⊂ Rd, the moving least squares
problem (1) can be writen as

Find s∗ =
m
∑
i=1

ai(x)pi(x) such that

min
s∈S

{
n

∑
j=1

[ s(x j)− f j] 2w(x,x j)

}

= min
ai ∈ R

1 ≤ i ≤ m

⎧⎨
⎩

n

∑
j=1

[
m

∑
i=1

aipi(x j)− f j

]2

w(x,x j)

⎫⎬
⎭

=
n

∑
j=1

[
m

∑
i=1

ai(x)pi(x j)− f j

]2

w(x,x j). (2)

According to least squares principle, for any point x ∈
Ω ⊂ Rd, the coefficients {ai(x)}m

i=1 ⊂ R of the solution
function s∗ should be the solution of the following linear
equations system

A(x)a(x) = B(x)u, (3)

where matrix

A(x) = PT W(x)P, B(x) = PT W(x),
W(x) = diag{w(x,x1), w(x,x2), . . . , w(x,xn)}, (4)

P =

⎡
⎢⎢⎢⎣

p1(x1)p2(x1) . . . pm(x1)
p1(x2)p2(x2) · · · pm(x2)

· · · · · · . . . · · ·
p1(xn)p2(xn) · · · pm(xn)

⎤
⎥⎥⎥⎦ ,

a(x) =

⎡
⎢⎢⎢⎣

a1(x)
a2(x)
...
am(x)

⎤
⎥⎥⎥⎦ ,

u =

⎡
⎢⎢⎢⎣

f1
f2
...
fn

⎤
⎥⎥⎥⎦ . (5)

In order to describe the solvability of the linear equations
system (3) clearly, we need introduce the following defi-
nition as in reference [Zuo and Nie(2005)].

Definition 1 Assuming that we have functions series
{ϕi(x)}m

i=1 and particles set X = {x j}n
j=1, {ϕi(x)}m

i=1 is
said to be linear independent on the set X if equations
m
∑
i=1

ciϕi(x j)= 0 (1≤ j ≤ n) lead to c1 = c2 = · · ·= cm =

0.

Remark 2 According to the definition, obviously the
functions series {ϕi(x)}m

i=1 is linear independent on the
set X if and only if the rank of the matrix ΦΦΦ is m. The
matrix ΦΦΦ is defined as

ΦΦΦ =

⎡
⎢⎢⎢⎣

ϕ1(x1)ϕ2(x1) . . .ϕm(x1)
ϕ1(x2)ϕ2(x2) · · ·ϕm(x2)

· · · · · · . . . · · ·
ϕ1(xn)ϕ2(xn) · · ·ϕm(xn)

⎤
⎥⎥⎥⎦ .

In other words, the column vectors of matrix Φ are linear
independent. The geometric explanation is that there is
a group of particles {xi j}m

j=1 ⊂ X such that they do not
locate in any same curve expressed by a function in space
span{ϕ1(x),ϕ2(x), · · · ,ϕm(x)}.

Now, let us come back to the MLS approximation. For
a fixed x ∈ Ω, suppose that there are number of k parti-

cles, {xi1,xi2, · · · ,xik} ∆=Px ⊂ PΩ, which satisfy condition
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weight w(x,xl) > 0 for any xl ∈ Px in contrast with weight
w(x,xl) = 0 for xl ∈ PΩ\Px. Reference [Atluri (2004)]
calls Px as the influence domain of point x based on given
particles set PΩ.

Take a permutation matrix Tx which can be used to real-
ize the following transformation

TxW(x)TT
x =

[
W11(x) O12

O21 O22

]
, (6)

where matrix

W11(x) = diag{w(x,xi1),w(x,xi2), · · · ,w(x,xik)},

and the sizes of the zero matrixes O12, O21, O22 are
k× (n− k), (n− k)× k, (n− k)× (n− k) respectively.
Using the characteristic of permutation matrix, we have
the alternative form of coefficient matrix of linear equa-
tions system (3) as follows

A(x) = PT W(x)P = PT TT
x TxW(x)TT

x TxP

= (TxP)T TxW(x)TT
x (TxP) (7)

Let’s dispart the matrix (TxP)n×m into two parts, as fol-
lows

TxP =
(

P1

P2

)
(8)

where matrix P2 has the size of (n− k)×m and matrix
P1 has the form

P1 =

⎡
⎢⎢⎢⎣

p1(xi1)p2(xi1) . . .pm(xi1)
p1(xi2)p2(xi2) · · ·pm(xi2)

· · · · · · . . . · · ·
p1(xik)p2(xik) · · · pm(xik)

⎤
⎥⎥⎥⎦

k×m

(9)

Substitute formulas (6) and (8) into (7), and we obtain
that coefficient matrix

A(x) =
(

P1

P2

)T [
W11(x) O12

O21 O22

] (
P1

P2

)
= PT

1 W11(x)P1 . (10)

Due to diagonal matrix W11(x) being positive symmetry,
det(A(x)) �= 0 if and only if rank(P1) = m. Using the
Remark 2 and Definition 1, that is to say functions series
{pi(x)}m

i=1 should be linear independent on the influence

domain Px = {xi1,xi2, · · · ,xik}. Conclude this into the fol-
lowing theorem.

Theorem 3 For any x ∈ Ω, the linear equation sys-
tem derived from moving least squares approximation
exist unique solution if and only if the base functions
{pi(x)}m

i=1 is linear independent on the influence domain
Px of point x based on the given particles set PΩ.

Remark 4 The expression (10) of coefficient matrix A(x)
show us that the coefficient matrix of MLS method is
positive symmetry under the condition of Theorem 3.
And the characteristic leads that much more methods can
be used to solve equations system (3).

Remark 5 The theorem is correct for any kind of weight
function, random distributed particles, and any dimen-
sion of any shape of domain Ω used in the MLS approx-
imation.

Remark 6 To ensure basis {pi(x)}m
i=1 of linear space S

being linear independence on the influence domain Px of
any point x ∈ Ω, all of the radius r j (1 ≤ j ≤ n)of the
compact support of weight function W(x,x j) must large
enough such that Px can contain number of m particles at
least. That is to say for any point x ∈ Ω there are number
of k ≥ m = dim(S) supports of weight functions which
cover the point x, and among of the k centers of the sup-
ports, there are m center at least which do not locate on
any curve defined by a function in space S.

Although satisfying the condition of the Theorem 3 en-
sures that the MLS method has unique analysis solution,
it does not tell us what the best radius of the compact
support of weight function should be to obtain a good
approximation. This problem will be discussed in the
following several sections.

3 Application to linear and quadric basis

Now we use the previous theory to the case of the linear
space S with linear and quadric basis respectively and
assuming that the particles PΩ = {x j}n

j=1 are distributed
uniformly on the bounded convex domain Ω ⊂ R2 with
particles step h, namely the distance along the coordinate
axis between the adjacent particles.

In the case of linear basis, we have linear space S =
span{1,x,y} and m = dim(S) = 3. According to The-
orem 3 and Remark 6, the influence domain Px for any
point x ∈ Ω must include at least 3 particles not shar-
ing any same straight line, then the MLS method can
be used to evaluate the approximation of the unknown
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function at point x. As the particles is distributed like
Fig. 1, and weight functions take the form of w(x,x j) =
w0
(∥∥x−x j

∥∥
2

/
r
)
, the support radius r of the support

should be greater than
√

5
/

2h ≈ 1.11803h, which can

be obtain by sampling several special point x along the
domain boundary ∂Ω only because the interior point x
has more particles included in its influence domain .

In the case of quadratic basis, linear space S =
span{1,x,y,x2,xy,y2} and the dimension m = dim(S) =
6. Similarly discussion as in the linear case, we know that
the influence domain Px must include 6 particles not shar-
ing any quadratic curve (two lines regards as a special
quadratic curve), and further the support radius r should
be greater than

√
17
/

2h ≈ 2.0616h.

Remark 7 Although the previous conditions about the
radius of support can ensure the matrix inversion of the
MLS approximation possible, a little larger support ra-
dius than the previous mentioned is needed to reduce
the condition number of the coefficient matrix. Through
computing simulation, reference [Zuo and Nie (2005)]

suggests that r ≥ 1.2h >
√

5
/

2h for linear basis and

r ≥ 2.5h >
√

17
/

2h for quadratic basis. We will search
the best support radius based on a model in the coming
section.

      

(a) linear basis        (b) quadratic basis 

Figure 1 : The positions where the minimum radius of
influence domain needed by MLS method. • point x ∈
Ω ◦ particle in Px

4 Model of optimal radius

It is very hard just depending on the mathematical anal-
ysis to obtain the optimal radius of support of the weight
function used in the MLS approximation. To our knowl-
edge there is no a clear result about this problem up to

now. Here we try to develop a mathematic model and
systemic numerical tests based on approximation theory
to solve this problem partially.

According to reference [Atluri (2004)], the 4th order
spline function which takes as the following form

w0(t) =
{

1−6t2 +8t3 −3t4

0
0 ≤ t ≤ 1
1 < t

(11)

is suggested to use as the weight function in MLS method
because it has better smoothness of the first derivative of
the approximate function.

Owing to Weierstrass theorem that any continuous func-
tion can be approximated by a polynomial for any given
accuracy requirement, we take the monomial basis, for
example in R2 space they are

1,x,y,x2,xy,y2,x3,x2y,xy2,y3, · · ·

to express the polynomial which is used to approximate
a given functions. Thus a good approximation method
should approximate monomials efficiently, and the re-
verse is correct because of the following fact

| f − s∗| ≤ | f − p|+ | p− s∗| ≤ ε+ | p− s∗| ,

where f is any continuous function, s∗ is the approxima-
tion function of function f by MLS methods, and p is the
polynomial used to approximate f for a given accuracy
requirement ε > 0.

For each monomial, we use MLS method to approxi-
mate it, and find the best radius through comparing the
Sobolev norms of the approximate error. Considering the
reproducing ability for polynomials of MLS which is de-
cided by the linear space S used in formula (1), the first
several monomials no need to be tested.

Sobolev norm ‖•‖t is defined as follows

‖ f‖t =

(
t

∑
l=0

∑
|α|=l

Z
Ω

[Dα f (x)]2dΩ

)1/2

,

f ∈ Ht(Ω), Ω ⊂ Rd (12)

where multi-index α = (α1,α2, · · · ,αd) is used, |α| =
d
∑
i=1

αi, {αi}d
i=1 are nonnegative integers, and differential

operator Dα =
(

∂
∂x1

)α1
(

∂
∂x2

)α2 · · ·
(

∂
∂xd

)αd
.
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(a) 

 
(b) 

Figure 2 : Errors of MLS method to monomials with varying support radius (Linear basis). (a) ‖•‖0, (b) ‖•‖1 norms
are used to measure errors respectively.

Denote the monomial optimal radius (MOR) of support
of the weight used in MLS method as r(t,α)

opt while the ap-
proximated monomial is xα = xα1

1 xα2
2 · · ·xαd

d and Sobolev
norm ‖•‖t is used to measure approximate error. MOR

r(t,α)
opt can be gotten approximately through simple search-

ing methods and the initial searching radius can be de-
fined through the theory in section 2 (Step 0).

Generally, for different monomials, the MORs are differ-
ent each other. So we need use these MORs to develop
the optimal radius of MLS method r(t)

opt . Assume that the
MLS approximate has degree of (m∗−1) polynomial re-
producing. The following three steps can be used to ob-
tain r(t)

opt .

Step 1 Develop the group optimal radius (GOR) of
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Table 1 : Evaluation of optimal radius in linear basis case (h=0.25)

h=0.25 
n=2 

x2     xy 
n=3 

x3       x2y
n=4 

x4       x3y      x2y2 …

),0( α
optr 0.290    0.390 0.290    0.325 0.290    0.315    0.315 …

),0( n
optr 0.323 0.308 0.305 …t=0 

)0(
,noptr 0.323 0.318 0.316 …

),1( α
optr 0.420     0.390 0.420     0.415 0.420     0.415    0.410 …

),1( n
optr 0.410 0.418 0.416 …t=1 

)1(
,noptr 0.410 0.413 0.412 …

Table 2 : Evaluation of optimal radius in quadratic basis case (h=0.25)

h=0.25 
n=3 

x3      x2y
n=4 

x4        x3y      x2y2
n=5 

x5       x4y      x3y2 …

),0( α
optr 0.560    0.520 0.560    0.545    0.515 0.560    0.545   0.515 …

),0( n
optr 0.540 0.545 0.540 …t=0 

)0(
,noptr 0.540 0.542 0.541 …

),1( α
optr 0.585     0.575 0.590    0.580   0.525 0.630    0.580   0.555 …

),1( n
optr 0.580 0.573 0.588 …t=1 

)1(
,noptr 0.580 0.578 0.579 …

MLS method r(t,n)
opt as simple arithmetic average of the

MORs of monomials with the same degree n:

r(t,n)
opt = ∑

|α|=n

r(t,α)
opt

/
Cn, (13)

where Cn is the cardinality of multi-index set {α : |α| =
n}.

Step 2 Develop the partial optimal radius (POR) of
MLS method r(t)

opt,n as

r(t)
opt,n =

n

∑
l=m∗

wlr
(t,l)
opt

/
n

∑
l=m∗

wl. (14)

where {wl}n
l=m∗ are a group of weights of GOR{

r(t,l)
opt

}n

l=m∗ For the first several degrees of monomials

less than m∗, any radius which satisfies the condition of
Theorem 3 in this paper is optimal because of the zero er-
ror caused by the reproduction. So the optimal radius for-
mula (14) does not include the contributions of those low
orders of monomials. As the equal weights {wl}n

l=m∗ are
used for the GOR, formula (14) means the simple arith-
metic average over the nonzero error groups. Otherwise,
it is an average with weights on GOR. In order to ensure
better approximate ability on a linear space, gradual re-
ducing weights such as {wl = 1/2l}n

l=m∗ are suggested to
use.

Step 3 Develop the optimal radius of MLS method r(t)
opt

as the limit of POR

r(t)
opt = lim

n→∞
r(t)
opt,n. (15)

As uniform particles are used, r
(t)
opt depends on particle
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(a) 

(b) 

Figure 3 : Errors of MLS method to monomials with varying support radius (Quadric basis). (a) ‖•‖0, (b) ‖•‖1
norms are used to measure errors respectively.

step hobviously. Let’s name quantity r(t)
opt/h = s(t) as opti-

mal scaling. The numerical results in section 6 will show
that optimal scaling is independent on particle step h.

5 Optimal radius of linear and quadratic basis

Now we use the model posed in the previous section to
develop the optimal scaling of MLS in the case of linear
space S with linear and quadratic basis being used for
2 dimensional domain Ω = [0, 1]× [0, 1] with uniform
distributed particles.
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While the linear basis are used in MLS approximation,
the errors of approximations to a group of monomials
with varying radius in different norms are show in Fig.2,
and the MORs r(0,α)

opt and r(1,α)
opt is given in Tab. 1. In

the computing process, searching method is used with
researching step 0.005 and initial radius value 1.12h >√

5
/

2h ≈ 1.11803h that the reason has been discussed

in details in section 3.

Considering the symmetry, we just show data about the
partial monomials in a group in Fig. 2 and Tab. 1. GORs
and PORs are evaluated due to formula (13) and (14) with
weights {wl = 1/2l}n

l=m∗ respectively. Owing to formula

(15), the optimal radius of MLS r(0)
opt ≈ 0.316, r(1)

opt ≈
0.412 while particle step h = 0.25 is used, and the opti-
mal scalings s(0) ≈ 1.264, s(1) ≈ 1.648. The reason that
scaling s(1) > s(0) is that error measured by norm ‖•‖1
includes more items compared with norm ‖•‖0, namely
first order differentials, and this leads to more smooth re-
quirement.

While the quadric bases are used, the same process as the
linear case is followed except that for the initial searching
radius is 2.06h≈√

17
/

2h. The corresponding data are
shown in Fig. 3 and Tab. 2. The optimal radius of MLS is
r(0)
opt ≈ 0.541, r(1)

opt ≈ 0.579 while particle step h = 0.25
is used, and the optimal scalings s(0) ≈ 2.164, s(1) ≈
2.316.

Remark 8 Although the data we used is dependent on
node step h, the optimal scaling s(t) are independent of
h which will be shown through numerical examples in
next section. And the results can be applied to the other
2 dimensional domain with uniform nodes because linear
map does not change the key characteristics of polynomi-
als such as degree.

Remark 9 The model can be used to three dimensional
problem without any difficulty. As the quasi-uniform
[Babuska , Banerjee and Osborn (2003)] distributed par-
ticles are used, it can be used with little modify which
will be given in coming paper.

6 Numerical test

In this section, we check that the optimal scaling s(t) has
little dependent on node step h firstly. Then some com-
plex functions are used to test the efficiency of the opti-
mal scaling obtained by the model posed in this paper.

6.1 Optimal scaling independent on node step test

Two different node steps 0.2 and 0.125 compared with
the step 0.25 are used to the model in section 5 to obtain
the optimal scaling while linear and quadratic base are
used respectively. The optimal scaling results evaluated
from the data in Tab.5-6 and Tab. 7-8 are given in Tab. 3
and Tab. 4 for two kinds of linear space S respectively.
The results show the optimal scaling of radius of support
of weight function evaluated from different steps is equal
each other approximately, and the little difference among
them is caused mainly from searching step.

Table 3 : Comparing of optimal scaling with varying par-
ticle steps (linear basis)
h 0.25 0.2 0.125 . . .
s(0) 1.264 1.275 1.264 . . .
s(1) 1.648 1.665 1.672 . . .

Table 4 : Comparing of optimal scaling with varying par-
ticle steps (quadratic basis)
h 0.25 0.2 0.125 . . .
s(0) 2.164 2.175 2.176 . . .
s(1) 2.316 2.315 2.200 . . .

6.2 Efficient test

Three functions ex sinysin(x2y) and exy3
are used to test

the efficiency of the optimal scaling of support radius of
weight function in MLS method. And let particle step
h=0.125. The error curves measured by two kinds of
norms varying with support radius are displayed in Fig.
4 for linear basis case and Fig. 5 for quadratic basis.

Fig. 4 (a) and (b) show that while support radius

r = s(0)h = 1.264×0.125 = 0.158

and

r = s(1)h = 1.672×0.125 = 0.209

are used respectively MLS method with linear basis
gives the three test functions the best approximations all-
around in corresponding norm of ‖•‖0 and ‖•‖1. Simi-
larly, Fig. 5 (a) and (b) indicate that while MLS method
with quadratic basis and support radius taken as

r = s(0)h = 2.176×0.125 = 0.272
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(a)                                            (b) 

Figure 4 : Test about optimal radius (linear basis case). (a) ‖•‖0, (b) ‖•‖1 norms are used to measure errors
respectively.

 
(a)                                              (b) 

Figure 5 : Test about optimal radius (quadratic basis case). (a) ‖•‖0, (b) ‖•‖1 norms are used to measure errors
respectively.

and

r = s(1)h = 2.200×0.125 = 0.275 ,

the best approximations all-around to the three test func-
tions in norm of ‖•‖0 and ‖•‖1 are obtained respectively.

7 Conclusion

Based on matrix analysis and approximation theory, this
paper develops an efficient approach to find the optimal

radius of support of radial weight function used in mov-
ing least squares method. As an example, while uniform
distributed particles and the 4th order spline weight func-
tion are adopted in MLS method in two dimension do-
main, and two kinds of norms are used to measure er-
ror, optimal results for linear and quadratic basis are ob-
tained, and then the test data verify that the optimal value
are correct.

Acknowledgement: This work was supported by the



146 Copyright c© 2006 Tech Science Press CMES, vol.12, no.2, pp.137-147, 2006

Table 5 : Evaluation of optimal radius in linear basis case

h=0.2 
n=2 

x2      xy 
n=3 

x3       x2y
n=4 

x4      x3y      x2y2 …

),0( α
optr 0.235    0.310 0.235    0.260 0.235     0.255     0.255 …

),0( n
optr 0.260 0.248 0.247 …t=0 

)0(
,noptr 0.260 0.256 0.255                     …

),1( α
optr 0.340    0.310 0.340    0.335 0.340     0.335     0.330 …

),1( n
optr 0.330 0.338 0.336 …t=1 

)1(
,noptr 0.330 0.333 0.333 …

Table 6 : Evaluation of optimal radius in linear basis case

h=0.125 
n=2 

x2       xy 
n=3 

x3        x2y
n=4 

x4        x3y        x2y2 …

),0( α
optr 0.145     0.195 0.145     0.160 0.145     0.160     0.160 …

),0( n
optr 0.162 0.153 0.154 …t=0 

)0(
,noptr 0.162 0.159 0.158 …

),1( α
optr 0.215     0.195 0.210     0.210 0.210     0.210     0.210 …

),1( n
optr 0.208 0.210 0.210 …t=1 

)1(
,noptr 0.208 0.209 0.209 …

Table 7 : Evaluation of optimal radius in quadratic basis case

h=0.2 
n=3 

x3     x2y
n=4 

x4       x3y     x2y2
n=5 

x5        x4y      x3y2 …

),0( α
optr 0.450   0.415 0.450    0.440   0.415 0.450    0.440   0.415 …

),0( n
optr 0.433 0.439 0.435 …t=0 

)0(
,noptr 0.433 0.435 0.435 …

),1( α
optr 0.460   0.485 0.460   0.460   0.415 0.475    0.460   0.455 …

),1( n
optr 0.473 0.451 0.463 …t=1 

)1(
,noptr 0.470 0.464 0.463 …
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Table 8 : Evaluation of optimal radius in quadratic basis case

h=0.125 
n=3 

x3     x2y
n=4 

x4     x3y    x2y2
n=5 

x5       x4y       x3y2 …

),0( n
kr 0.280    0.260 0.280    0.280    0.255 0.280    0.280   0.265 …

),0( n
optr 0.270 0.275 0.275 …t=0 

)0(
,noptr 0.270 0.272 0.272 …

),1( n
kr 0.285    0.255 0.285    0.285   0.255 0.290    0.285   0.285 …

),1( n
optr 0.270 0.279 0.287 …t=1 

)1(
,noptr 0.270 0.273 0.275 …
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Atomic-level Stress Calculation and Continuum-Molecular System Equivalence

Shengping Shen1 and S. N. Atluri1

Abstract: An atomistic level stress tensor is defined
with physical clarity, based on the SPH method. This
stress tensor rigorously satisfies the conservation of lin-
ear momentum, and is appropriate for both homogeneous
and inhomogeneous deformations. The formulation is
easier to implement than other stress tensors that have
been widely used in atomistic analysis, and is validated
by numerical examples. The present formulation is very
robust and accurate, and will play an important role in
the multiscale simulation, and in molecular dynamics.
An equivalent continuum is also defined for the molec-
ular dynamics system, based on the developed definition
of atomistic stress and in conjunction with the SPH tech-
nique. The process is simple and easy to implement, and
the fields are with high-order continuity. This equivalent
continuum maintains the physical attributes of the atom-
istic system. This development provides a systematic ap-
proach to the continuum analysis of the discrete atomic
systems.

keyword: Atomistic analysis, stress, SPH, continuum.

1 Introduction

The macroscopic behavior of solids is widely studied
from a microscopic level, using the viewpoints of atom-
istic mechanics [Askar (1985), Bardenhagen and Tri-
antafyllidis (1994)]. To bridge the atomistic mechan-
ics and the continuum mechanics, it is important to
know the relationships between the microscopic quanti-
ties of atoms, and the macroscopic quantities of continua.
Atomic-level stress calculation plays a very important
role in comparisons of continuum predictions with atom-
istic simulations, and it allows the intensity and nature of
internal interactions in the discrete particle systems to be
measured. The atomistic stress can be employed to inter-
pret the results of atomistic simulation in light of contin-

1 Center for Aerospace Research & Education
University of California at Irvine
5251 California Avenue, #140
Irvine, CA 92617, USA

uum mechanical calculations, which have been used in
molecular dynamics simulations of solids in a variety of
ways, such as characterization of defects, the determina-
tion of elastic constants, and the study of the local elastic
properties of carbon nanotubes [Chandra, Namilae, and
Shet (2004)]. There are different ways to calculate stress
in atomistic simulations. Pioneering work has been done
in this field by Born and Huang (1954) who used an elas-
tic energy approach to evaluate the stress in lattices by
means of the Cauchy-Born hypothesis for homogeneous
deformation.

Another widely used stress measure at the atomic scale is
the virial stress, which is based on a generalization of the
virial theorem of Clausius (1870) for gas pressure. This
quantity includes two parts, and can be expressed as:

σσσvirial (r) =
1
Ω ∑

i

[
−miu̇i ⊗ u̇i +

1
2 ∑

j �=i

ri j ⊗ fi j

]
(1)

Here i and j are the atomic indices. The summation is
over all the atoms occupying the total volume Ω. m i is
the mass of atom i, ui is the displacement vector of atom
i relative to a reference position, u̇i = dui

/
dt denotes the

material time derivative of ui, ri j = r j − ri, and ⊗ repre-
sents the tensor product of two vectors. f i j is the inter-
atomic force applied on atom i by atom j,

fi j =
∂φ(ri j)

∂ri j

ri j

ri j
(2)

where ri j =
∥∥ri j

∥∥, φ(ri j) is the energy of the atomic en-
semble. It is noted that this stress formulation is strictly
valid only when a homogeneous stress state exists in the
entire volume. The first term on the right-hand side of
equation (1) is the kinetic-energy term, which accounts
for mass transport across a fixed spatial surface. The
second term comes from interatomic interactions. Based
on the virial stress, some other formulations of stress in
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molecular dynamics such as BDT stress [Basinski, Dues-
bery, and Taylor (1971)], Lutsko stress [Lutsko (1988);
Cormier, Rickman, and Delph (2001)], and mechanical
stress [Cheung and Yip (1991)] are proposed. However,
as pointed by Zhou (2003):

The virial, BDT, Lutsko and mechanical stresses, are
not the Cauchy stresses or any other form of mechani-
cal stresses. It must be clearly stated that the virial the-
orem for gas pressure is totally correct in the statistical
sense. However, generalizing it to claim that mechanical
stress also depends on mass transfer as well as internal in-
teratomic force is unjustifiable and incorrect. The virial
stress as defined in equation (1) has the geometric inter-
pretation of being a measure for the momentum change
in a fixed spatial region. This interpretation does not as-
sign any physical significance to the virial stress as a pos-
sible measure of mechanical interaction. Stress is a mea-
sure of the effect of pure force on momentum change as-
sociated with a fixed amount of mass (not change in mo-
mentum contained in a spatial region). The “virial stress”
is defined using a spatial cut which is fixed in space, and
is related to the statistical average of the external forces
between the system and a rigid non-deforming container.
If the virial stress is treated as a measure of mechanical
force, the balance of momentum would be violated.

However, if the kinetic-energy term in these expressions
is thrown off, they reduce to Cauchy stress with a phys-
ical meaning. In this paper, we will not consider the
kinetic-energy term in the formulations of BDT and Lut-
sko stresses. BDT stress is put forward by Basinski,
Duesbery, and Taylor (1971), and is based on a volu-
metric partition of the homogeneous deformed bulk by
extending the virial stress to one atomic volume. BDT
stress is defined as:

σσσBDT (r) =
1

2Ωi ∑
j �=i

ri j ⊗ fi j (3)

where Ωi is a small volume around an atom i. Theoreti-
cally, the above definitions are valid only for a homoge-
neous system. In section 2, we will prove that the BDT
stress in eq. (3) is equivalent to the Cauchy-Born hypoth-
esis for homogeneous deformation. The total volume and
the volume of a single atom are required in the calcula-
tion of virial and BDT stresses. The local stress proposed
by Lutsko (1988) and extended by Cormier, Rickman,
and Delph (2001) is based on the local stress tensor of

statistical mechanics. The Lutsko stress can be expressed
as

σσσLutsko (r) =
1

2ΩAvg ∑
i
∑
j �=i

ri j ⊗ fi j li j (4)

where ΩAvg is the averaging volume, li j (0 ≤ li j ≤ 1)
denotes the fraction of the length of the i− j bond ly-
ing inside the same averaging volume. For a homoge-
neously deformed system, σσσLutsko approaches σσσBDT for
large averaging volumes. Lutsko stress has been used
to evaluate local elastic properties of grain boundaries
in metals. Lutsko stress assumes that the stress state is
homogenous in the averaging volume. The mechanical
stress advanced by Cheung and Yip (1991) is calculated
as the sum of the time rate of the change of the momen-
tum flux and the forces divided by area across the partic-
ular surface of interest. The researchers interested in sur-
face problems proposed the atomic stress based on force
balance and the interplanar interaction, instead of the in-
teratomic interaction [Machova (2001)].

Two years back, Atluri (2002) pointed out that in a multi-
scale modeling, the forces on particles are simply dif-
ferent: those on an atomic particle arise due to atomic
interactions, while those on a continuum particle arise
due to the divergence of the stress-state around the par-
ticle, as pointed out by Navier. Thus, in any continuum-
molecular dynamics equivalence, the atomic forces in
MD should be made equivalent to the divergence of the
stress-field in a continuum. Thus, in this paper, a new
atomistic stress formulation is proposed with physical
clarity, which is appropriate for both homogeneous and
inhomogeneous deformations. In this paper, the formula-
tion of the atomistic stress is derived directly based on
the physics. Since the stress is a continuum concept,
at first, the discrete atomistic force-field is smoothed by
using the Smoothed Particle Hydrodynamics technique
[Lucy (1977)]. Then, by analyzing the force-state of an
infinitesimal parallelepiped at point r, a relationship be-
tween the stress and the atomistic force can be developed.
This formulation is useful and convenient for computa-
tional applications, and satisfies the conservation of lin-
ear momentum. The results are compared with the BDT
and Lutsko stress. Based on the new formulation of the
atomistic stress, an equivalent continuum for molecular
system is defined, which conserves the momentum and
mass of the discrete atomic system. The smoothed parti-
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cle hydrodynamics (SPH) technique is employed to make
the discrete atomic system to be an equivalent continuum
system.

Smoothed Particle Hydrodynamics (SPH) has been in-
troduced by Lucy (1977) to study self-gravitating fluids.
The idea of the method is to consider the fluid as an en-
semble of (smooth) particles. Each particle has a kernel
which represents its mass distribution, and carries infor-
mation on the average values of dynamical and thermo-
dynamical quantities, as well as on their gradients. After
then, it has become a widely used tool in astrophysics
[Monaghan (1992)]. In astrophysics, the system is dis-
crete. By means of a localized kernel function, a local
continuous field is generated to avoid singularity. SPH
provides a systematic method to obtain these quantities
based on a “smoothed” estimate over neighboring parti-
cles. The idea for estimating the quantities using a kernel
is at the heart of the SPH technique. We can employ
this idea to obtain any physical quantity of a particle us-
ing a kernel-weighted estimate over neighboring parti-
cles. A primary reason for the popularity of SPH, de-
spite its shortcomings, is its overall simplicity and ease
of use. Due to its distinct advantage, the SPH method
was widely adopted as one of the efficient computational
techniques to solve applied mechanics problems.

2 The derivation of the stress tensor

As we discussed in the previous section, there are lots of
atomistic stress tensors in volume-averaged form. Here,
we will give an atomistic tensor in a nonvolume-averaged
form with physical clarity.

Consider a discrete atomic system, wherein the inter-
atomic force on atom i is fi. As well known, the con-
cept of stress is a continuum concept. Hence, to derive
the atomistic stress, at first, we should make the discrete
atomic system to be an equivalent continuum system.
The idea of the SPH method is employed here to smooth
the discrete atomistic force field. SPH is very popular
in astrophysics, where the real physical system is dis-
crete. In order to avoid singularity, a local continuous
field is generated by introducing a localized kernel func-
tion, which can serve as a smoothing interpolation field.
The physical meaning of the kernel function can be inter-
preted as the probability of a particle’s position, as in a
probabilistic method. The SPH is only a smoothing tech-
nique. In this paper, we will smooth the discrete atomic
force field at first. In this case, the force per unit volume,

i.e. the force density g(r), can be obtained by means of
the SPH, as

g(r) = ∑
i

fiw(r−ri,h) (5)

where fi is the force on atom i, w(x,h) is the smooth ker-
nel function, and the summation is over all the particles.
Notice that we do not have to divide by volume, because
the kernel is normalized to unite volume [w(x,h) has the
units of inverse volume, as in eq. (6)], the division by
volume is effectively incorporate into w(x,h). A com-
mon choice for a kernel is a Gaussian, namely

w(x,h) =
1(√
πh
)d exp

(
−x2

h2

)
(6)

where d is the number of spatial dimensions in the prob-
lem, and h is the smoothing length. The kernel is normal-
ized such that its integral is unity, i.e.

∫
w(x,h)dx = 1 (7)

where the integration is over all the space. In general, the
kernel function has to be a compact-supported positive
function, and its integral is unity. Moreover, as h → 0,
the kernel function should approach to δ(x). It is im-
portant to realize that although the summations are for-
mally over all the particles, only a small number actu-
ally contribute, because w(x,h) can be chosen so that
it falls off rapidly for appropriate h. Other commonly
used compact-supported kernel functions include the cu-
bic spline and the quartic spline [Atluri (2004), Atluri
and Shen (2002)], in these cases, the smoothing length
becomes the radius of the compact support.

Now, in the equivalent continuum system, we consider
an infinitesimal parallelepiped at point r with surfaces
parallel to the coordinate planes (as shown in Fig. 1). In
the infinitesimal volume, the volume of the infinitesimal
parallelepiped is dv = dx1dx2dx3, and the Cauchy stress
at point r is σσσ(r), then, the resultant forces at point r in xi

direction are: σ ji, jdv. On the other hand, from eq. (5), we
can get the force density at point r, g(r), of the equivalent
continuum system. Hence, the resultant forces at point r
should be equal to g(r)dv. Thus, we have the following
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Figure 1 : The definition of the stress tensor

equation to relate the equivalent-continuum stress and the
atomic force,

divσσσ(r)dv = g(r)dv (8)

Then, we have

divσσσ(r) = ∑
i

fiw(r−ri,h) (9)

Defining the Fourier transform of a function F(r) as

F̂ (s) =
∫

V
F (r)eis·rdV (10)

and the inverse transform as

F (r) =
1

(2π)3

∫
V s

F̂ (s)e−is·rdV s (11)

where V s is the transformed space. By using the Fourier
transformation, equation (9) can be written as

is · σ̂̂σ̂σ(s) = −∑
i

fiŵ (s)eis·ri

= −∑
i
∑
j �=i

fi je
is·ri ŵ (s)

= −1
2 ∑

i
∑
j �=i

[
fi je

is·ri + f jie
is·r j

]
ŵ (s)

= is · 1
2 ∑

i
∑
j �=i

ri j ⊗ fi j
eis·ri −eis·r j

is · r ji
ŵ(s) (12)

Here, we use the following equation to deriving eq. (12),

∫
V

[∇ ·σσσ(r)]eis·rdV

=
∫

V

[
∇ ·
(

eis·rσσσ
)
− ∇

(
eis·r

)
·σσσ
]
dV

=
∫

V

[
∇ ·
(

eis·rσσσ
)
− is ·

(
eis·rσσσ

)]
dV

=
∫

Γ
n ·
(

eis·rσσσ
)

dΓ − is ·
∫

V
eis·rσσσ(r)dV

= −is · σ̂(s)
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Noting that

eis·ri −eis·r j

is · r ji
= eis·r j

∫ 1

0
e(is·r ji)cdc (13)

By means of eq. (13) and carrying out the inverse trans-
form of eq. (12), the Cauchy stress of the atomic level
can be obtained as

σσσ(r) =
1
2 ∑

i
∑
j �=i

ri j ⊗ fi j

{
1

(2π)3

∫
V s

eis·r j

∫ 1

0
e(is·r ji)cdcŵ(s)e−is·rdV s

}

=
1
2 ∑

i
∑
j �=i

ri j ⊗ fi j

{∫ 1

0

[
1

(2π)3

∫
V s

ŵ(s)eis·(r jic+r j−r)dV s

]
dc

}

=
1
2 ∑

i
∑
j �=i

ri j ⊗ fi j

∫ 1

0
w [r− (r jic+r j)]dc (14)

As h→ 0, the kernel function w(x,h) should approach to
δ(x), and eq. (14) will be reduced to

σσσ(r) =
1
2 ∑

i
∑
j �=i

ri j ⊗ fi jδ[r− (r jik +r j)] (15)

where 0 ≤ k ≤ 1. δ[r− (r jik +r j)] is singular along the
line segment between ri and r j, and is zero elsewhere.
This singular expression can be used to obtain the aver-
age stress over any region of an atomistic ensemble, i.e.
the Lutsko stress. For a region with volume Ω Avg, by inte-
grating eq. (15), and divided by ΩAvg, eq. (4) is derived.
Moreover, if one thinks that the singular atomic stress
exists only at atomic positions, the physically significant
interpretation of eq. (15) in the context of discrete atomic
system is

σσσ(r) =
1
2 ∑

i
∑
j �=i

ri j ⊗ fi jδ(r−ri) (16)

This singular expression can be used to obtain the aver-
age stress over any region of an atomistic ensemble. For

a region with volume Ωi around atom i at the current con-
figuration, the average stress can be derived as the BDT
stress eq. (3). Equations (15) and (16) are useless for
computational applications, but the coarse-grained aver-
age stress can be defined by integrating equations (15)
and (16) over an appropriate averaging volume; while the
stress formulation (14) is useful for computational appli-
cations. The virial, BDT and Lutsko stresses smear the
effect of inhomogeneities due to volume averaging. The
calculation of the Cauchy stress in eq. (14) does not in-
volve ad hoc specification of a relevant volume, while
the evaluation of the BDT stress (or the Cauchy-Born
rule) for any set of atoms requires the identification of
a proper volume whose extent is not always obvious: in
atomic ensembles with irregular atom arrangement, the
identification of this volume can be ambiguous.

For the finite deformation, we can also derive the first
Piola-Kirchhoff stress T, based on the initial configura-
tion. We denote the initial position of the atom i as R i,
then, in initial configuration, eq. (9) can be rewritten as

divT(R) = ∑
i

fiw(R−Ri,h) (17)

Similarly, the first Piola-Kirchhoff stress tensor can be
obtained as

T(R) =
1
2 ∑

i
∑
j �=i

Ri j ⊗ fi j

∫ 1

0
w [R− (R jic+R j)]dc (18)

As h → 0, eq. (18) becomes

T(R) =
1
2 ∑

i
∑
j �=i

Ri j ⊗ fi jδ[R− (R jic+R j)] (19)

with 0 ≤ c ≤ 1. For the discrete atomic system, the phys-
ically significant solution of eq. (19) is

T(R) =
1
2 ∑

i
∑
j �=i

Ri j ⊗ fi jδ(R−Ri) (20)

This singular expression can be used to obtain the aver-
age stress over any region of an atomistic ensemble. For
a region with volume Ωi

0 around atom i at initial config-
uration, the average stress is
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T(R) =
1

2Ωi
0
∑

i
∑
j �=i

Ri j ⊗ fi j (21)

Recognizing the relationship between stress, deforma-
tion and internal strain energy, Born and Huang (1954)
used the Cauchy-Born hypothesis to evaluate the stress
in lattices for homogeneous deformation. In that method,
the gradient of the deformation F is defined as

ri j = FRi j (22)

The strain density is W
/

Ωi
0, where W is the interatomic

potential of the atomic volume Ω i
0. Then, the stress can

be derived as

T(R) =
1

Ωi
0

∂W
∂F

=
1

2Ωi
0
∑

i
∑
j �=i

∂W
∂ri j

∂ri j

∂F

=
1

2Ωi
0
∑

i
∑
j �=i

Ri j ⊗ fi j (23)

Here, we employed ∂ri j
/

∂F = Ri j in derivation of eq.
(23). From the finite deformation theory, we have

σσσ = JFT (24)

where J is the Jacobian. Hence, by means of eq. (24),
from eq. (23), we can get the Cauchy stress

σσσ(r) = JFT(R)

=
J

2Ωi
0
∑

i
∑
j �=i

FRi j ⊗ fi j

=
1

2Ωi ∑
i
∑
j �=i

ri j ⊗ fi j (25)

If Ωi is taken to be the total volume of the system, this
equation becomes the virial stress; if Ω i is taken to be a
small volume around an atom i, this equation becomes
the BDT stress. Eq. (25) confirms that the BDT stress

[or the second term of virial stress (1)] is identical to that
based on the Cauchy-Born hypothesis, in homogeneous
deformation. This also implies that the kinetic-energy
term of eq. (1) should not be included in the expression
of the atomic stress. However, there are a lot of limits
in the Cauchy-Born hypothesis [Atluri (2004), Shen and
Atluri (2004a, b)], while there are no limits on the for-
mulation in (14).

It is important to point out that the derivation here is also
appropriate for system with body forces, which can re-
sult from non-local effects of atoms or agents external to
the system under consideration. The result would be the
same, which will be shown in the next section.

3 Equivalent continuum for atomic system

It is important to know the relationships between the
microscopic quantities of atoms, and the macroscopic
quantities of continua, for nanoscale characterizations
of material behavior. Molecular dynamics and contin-
uum mechanics are on the opposite ends of the tempo-
ral and spatial scale spectrum, and consist of highly de-
veloped and reliable modeling methods. Continuum me-
chanics methods predict the macroscopic mechanical be-
havior of materials idealized as continuous media, based
on known constitutive relationships of the bulk material,
while molecular dynamic models predict molecular prop-
erties based on known quantum interactions. Each has
its own advantages and limitations. Continuum analy-
ses are appropriate only for a large enough system. Al-
ternative to continuum analysis, the atomistic modeling
and simulation calculates individual atoms explicitly, and
follows them during their dynamic evolution. However,
both continuum mechanics and molecular dynamics obey
the same fundamental laws, including Newton’s laws of
motion and conservation of mass. These fundamental
laws provide a bridge to link continuum mechanics and
molecular dynamics. If a continuum is equivalent to a
MD system, in addition that it contains the same amount
of mass as the particle system, the Newton’s laws of mo-
tion of the continuum system must be derived from the
Newton’s laws of motion of its corresponding MD sys-
tem, vice versa, i.e. they are equivalent. The equivalent
continuum development offers a high degree of fidelity
to the discrete description.

An equivalent continuum is constructed by using the
principle of the virtual work, and in conjunction with
finite element interpolations in Zhou (2003), Zhou and
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McDowell (2002); However, their formulations are very
complicated. Their development is computationally in-
tensive due to the construction of the finite elements.
The determined fields are piecewise continuous, even
for homogenous deformation. Moreover, the defined
continuum deformation fields lack the consistency with
the continuum differential requirement about the strain-
displacement relations. In this section, an equivalent con-
tinuum is defined for molecular dynamics (MD) particle
systems, based on the definition of atomistic stress (14)
and in conjunction with the SPH technique. This process
is simple and easy to implement, and the fields are with
high-order continuity.

For the MD system, the Newton’s laws of motion for
each atom i, can be written as

fi = miüi (26)

The force on atom i due to atoms or agents that are ex-
ternal to the system under consideration is denoted as f b

i ,
the total force on atom i is

fi = ∑
j �=i

fi j + fb
i = fs

i + fb
i (27)

It is noted that fb
i also includes the non-local interactions.

Let b denote the density of the continuum body force,
and let ρ represent the density of the continuum mass.
In this analysis, all the quantities are evaluated on the
current configuration. Similar to the analysis in section 2,
the resultant forces at point r in the equivalent continuum
system are: divσσσ+b then we have

divσσσ+b = ∑
i

fiw(r−ri,h)

= ∑
i

fs
i w(r−ri,h)+∑

i

fb
i w(r−ri,h) (28)

Thus, the density of the continuum body force can be
obtained as

b(r) = ∑
i

fb
i w(r−ri,h) (29)

The associations of internal forces to the internal stress
only, and the external force to the body force only, are

strictly required by the balance of momentum. And the
stress is still expressed as in eq. (14). The density of the
continuum mass can be expressed as

ρ(r) = ∑
i

miw(r−ri,h) (30)

Integrating eq. (30), and by means of eq. (7), we can
confirm the conservation of the mass, i.e.

∫
ρ(r)dr =

∑
i

mi.

Substitutingeq. (26) into eq. (28), the following equation
can be derived

divσσσ(r)+b(r) = ∑
i

miüiw(r−ri,h) (31)

On the other hand, the Newton’s laws of motion for the
equivalent continuum are

divσσσ(r)+b(r) = ρ(r) ü (r) (32)

Then, the acceleration field ü of the equivalent contin-
uum can be obtained as

ü(r) =
∑
i

miüiw(r−ri,h)

ρ(r)
=

∑
i

miüiw(r−ri,h)

∑
i

miw(r−ri,h)
(33)

Thus, the equivalent continuum is constructed from the
discrete MD system, which preserves the momentum,
and conserves the mass. Moreover, from the Newton’s
laws of motion for the equivalent continuum, eq. (32),
the Newton’s laws of motion for each atom i, eq. (26),
can also be derived.

A reinterpretation of the discrete atomistic force and de-
formation is reflected by the continuum field defined
here, which maintains the physical effects of the atom-
istic system. This development provides a systematic ap-
proach to the continuum analysis of the discrete atomic
system. It can also be applied to multiscale modeling of
material behavior which combines both MD and contin-
uum descriptions in the development of constitutive rela-
tions at different scales.
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4 Numerical examples

At first, we apply the stress formulation (14) to the case
of a homogeneously deformed cubic, crystalline solid.
Similar to Cormier, Rickman, and Delph (2001), we con-
sidered a collection of 2048 atoms, initially on the sites
of a face centered cubic (fcc) lattice and confined to a
periodic cubic simulation cell at temperature T=0. Em-
ployed is a modified (truncated) Lennard-Jones potential
[Broughton and Gilmer (1983)],

φ(r) =


4ε
[(σ

r

)12 −( σ
r

)6
]
+C1, r ≤ 2.3σ

C2
(σ

r

)12 +C3
(σ

r

)6 +C4
(

r
σ
)6 +C5, 2.3σ < r < 2.5σ

0, r ≥ 2.5σ
(34)

with

C1 = 0.016132ε, C2 = 3.1366×103ε, C3 = −68.069ε,
C4 = −0.083312ε, C5 = 0.74689ε

where ε and σ are the energy and length parameters, re-
spectively (not to be confused with the stress and strain).
The perfect fcc crystal has a lattice parameter of a0 =
1.550512σand the corresponding energy per atom 7.45ε.
The deformation can be imposed by simply changing the
lattice parameter. The elastic constants can be deduced
from the quadratic dependence of energy on strain, by us-
ing the Cauchy-Born hypothesis. We consider the simple
case of uniform applied deformations, with correspond-
ing strain tensor components ε11 = ε22 = ε33 = 0.002, the
remaining components are 0. In this case, the BDT stress
(or the stress from Cauchy-Born hypothesis) is equal to
the bulk stress. In the calculations, the kernel function
w(x,h) is truncated, by a truncated radius rw, beyond
which it falls off rapidly to zero for appropriate h, as

w(x,h) =




1

(√πh)d exp
(
−x2

h2

)
, |x| ≤ rw

0, |x|> rw

(35)

Thus, the kernel function becomes compact-supported.
The studies of SPH show that h = 0.4rw or so give very

good results. Our numerical tests also confirm this state-
ment. Fig.2 shows the effects of the ratio h/rw on the
stress value, the stress values of the formulation (14) are
normalized by the bulk stress, which is equal to the BDT
stress (or the stress from Cauchy-Born hypothesis) here.
It can be seen that a larger rw is needed for h = 0.2rw,
and the error is a little bigger for h = 0.5rw. Hence, in
this paper, we take h = 0.4rw for all the calculations. For
the purpose of comparison, we also compute the Lutsko
stress. For Lutsko stress, the radius of the spherical aver-
aging volume ΩAvg is taken to be rw.

Fig. 3 shows the magnitude of the stress σ11 at an obser-
vation point versus the radius r w, where the stresses are
normalized by the bulk stress, which is equal to the BDT
stress. The results of the present formulation are almost
overlapped with the bulk stress value, while the Lutsko
stress value oscillates around the bulk stress value. The
Lutsko stress value converges to the bulk stress value
for sufficiently large radii. However, the larger radius
is computational costly. Hence, in the following calcu-
lations, we choose the radius rw = 1.5a0, at which the
Lutsko stress value agrees with the bulk stress value vary
well in Fig. 3. Fig. 4 depicts the normalized stress σ11

at different observation points along the closed-packed
[110] direction. This figure also shows the results of the
present formulation agree with the bulk stress value very
well, and the Lutsko stress value oscillates around the
bulk stress value. From these figures, we can find that
the present stress formulation (14) is very robust and ac-
curate, while the accuracy of Lutsko stress depends on
the radius of the spherical averaging volume and the po-
sition of the observation point.

Now, we apply the stress formulation (14) to the case
of inhomogeneous deformation. A “big” atom replaces
the atom at the origin of the previous fcc crystalline
solid. The inhomogeneous elastic fields will arise due
to the presence of the “big” atom. For the “big” atom,
the energy and length parameters εb and σb are assumed
to be εb = 1.2ε and σb = 1.2σ, respectively. We em-
ployed the modified Newton-Raphson method to solve
equations: fi (r) = 0, to determine the equilibrium con-
figuration (i.e. the minimum energy configuration) for
this defected structure. This problem is similar to the
inclusion problem in a continuum. As is well known,
the continuum elastic field of an inclusion at the origin
falls off with distance r from the origin as 1

/
r2, and

the corresponding elastic stress field falls off with dis-
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Figure 4 : The stress values at different position along [110] direction

tance r from the origin as 1
/

r3 [Li, Shen, Han and Atluri
(2003)]. Fig. 5 depicts the radial component of the dis-
crete atomic displacement field in the close-packed [110]
direction versus (σ/r)2. We can find that the atomic
displacement demonstrates the expected 1

/
r2 behavior

when (σ/r)2 < 0.0924, i.e. r/σ > 1.5 ·√2a0
/

σ = 3.288
(i.e., beyond 1.5 times the lattice parameters from the ori-
gin). This is because the cut-off radius of the Lennard-
Jones potential for the “big” atom is r cut = 2.5σb = 3σ,
and 3.288σ is the nearest atomic site to r cut , the boundary
of the inclusion should be around this value.

Figs. 6, 7 and 8, respectively, show the variation of
the normalized stress components σ11, σ12 and σ33 in
the [110] direction versus (σ/r)3. In these figures, the
continuum solutions are plotted only for r /σ > 3.288
(i.e. (σ/r)3 < 0.0028) due to the reason that we just
discussed in the previous paragraph. The continuum so-
lution is obtained by an approximate method. The dis-
placement gradient is approximated form Fig. 5 at first,
then using the elastic constants of the homogenous per-
fect fcc crystalline solid [Cormier, Rickman, and Delph
(2001)] and the elastic constitutive relationship (Hook’s
Law), the continuum elastic stress can be determined.
For the purpose of comparison, we also plot here the
corresponding values of the Lutsko and BDT stresses.
For the BDT stress, we only calculate the values at the

atomic sites. Both of the Lutsko and BDT stress val-
ues are far away from the continuum solution. It can
be seen that the stress values of the present formulation
(14) agree with the continuum results very well beyond
2 times the lattice parameters from the origin (the “big

atom): (σ/r)3 ≤ 0.0017 (i.e., r/σ > 2 ·√2a0

/
σ = 4.385),

which fall off with distance r from the origin as 1
/

r3. In
range of 1.5-2 times the lattice parameters (i.e. 0.0017 <

(σ/r)3 < 0.0028), the stress values of the present formu-
lation (14) deviate a little from the (σ/r)3 behavior. The
deviations are due to the deviation of the elastic constants
from those of the perfect fcc crystalline in this range [ac-
tually, in this range, the displacement shown in Fig. 5 al-
ready deviates from the (σ/r)2 behavior]. In the range of
0-1.5 times the lattice parameters, comparison with con-
tinuum theory is impossible, since the elastic constants
cannot be well defined. However, the trend of the stress
value of the present formulation (14) in this range is con-
sistent with that of the displacements shown in Fig. 5.
The results of the Lutsko stress show bad shapes, per-
haps a larger averaging volume is required to improve its
performance, even for homogeneous deformations. The
requirement of a very large averaging volume inherently
decreases its use for computational applications. Since
the BDT stress is strictly valid only for homogeneous de-
formations, it is not surprising that it should not perform
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well in this case.

5 Conclusions

An atomistic level stress tensor is proposed with physical
clarity, based on the SPH method. This stress tensor rig-
orously satisfies the conservation of linear momentum,
and is appropriate for both homogeneous and inhomoge-
neous deformations. It is in a nonvolume-average form,
and thus does not involve ad hoc specification of a rel-
evant volume, whose extent is not always obvious: in
atomic ensembles with irregular atom arrangement, the
identification of this volume can be ambiguous. In con-
trast to this developed atomistic level stress tensor, other
widely used stress tensors in atomistic analysis are in a
volume-average form, and do not satisfy the conservation
of linear momentum. The formulation is easy to imple-
ment, and is validated for both the homogeneous defor-
mation, as well as defected crystalline solids. The nu-
merical results show that the present formulation is very
robust and accurate, and is superior to BDT and Lutsko
stress formulations. Our numerical results also confirm
that the BDT stress tensor is only appropriate for the ho-
mogeneously deformed system. The averaging volume
and the location affect the Lutsko stress very much. A
large averaging volume is required to get a stable value of
the Lutsko stress, even for homogeneous deformations.

An equivalent continuum is also defined for molecular
dynamics system, based on the developed definition of
atomistic stress and in conjunction with the SPH tech-
nique. The process is simple and easy to implement, and
the fields are with high-order continuity. This equivalent
continuum is a reinterpretation of the discrete atomistic
force and deformation fields of the MD system. This de-
velopment provides a systematic approach to the contin-
uum analysis of the discrete atomic system. It can also
be applied to multiscale modeling of material behavior
which combines both the MD and continuum descrip-
tions in the development of constitutive relations at dif-
ferent scales.

The atomistic stress tensor derived in this paper will play
an important role in the multiscale simulation [Srivas-
tava, Atluri (2002a, b); Garikipati (2002); Ghoniem, Cho
(2002)] and in molecular dynamics. The idea cannot be
limited to mechanical properties, for it can be easily ap-
plied to multiscale modeling, directly linking the elec-
tronic structure level to the continuum level. A multiscale
simulation based on this stress formulation is presented

in another companion paper. It is also noted that the use
of the SPH approximation is not central to the idea of
continuum-stress presented here. Alternate approxima-
tion will be discussed elsewhere.
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Computational Nano-mechanics and Multi-scale Simulation

Shengping Shen1 and S. N. Atluri1

Abstract: This article provides a review of the com-
putational nanomechanics, from the ab initio methods
to classical molecular dynamics simulations, and multi-
temporal and spatial scale simulations. The recent
improvements and developments are briefly discussed.
Their applications in nanomechanics and nanotubes are
also summarized.

1 Introduction

Due to their potentially remarkable mechanical proper-
ties, nano-structured materials have stimulated a lot of in-
terest in the materials research community in the last few
years. The design and fabrication of these materials are
performed on the nanometer scale, with the ultimate goal
of obtaining highly desirable macroscopic properties. In
particular, materials such as nanotubes, nanoparticle-
reinforced polymers and metals, and nano-layered ma-
terials have shown considerable promise. With the ad-
vances in materials synthesis and device processing ca-
pabilities, the importance of developing and understand-
ing nanoscale engineering devices has dramatically in-
creased over the past decade. Nanotechnology deals with
materials, devices, and their applications at the nano-
scale, where many diverse enabling disciplines and as-
sociated technologies start to merge, because these are
derived from the rather similar properties of the atomic
or molecular level building blocks. The subject of nano-
science/technology is defined as the science and tech-
nology of the direct or indirect manipulation of atoms
and molecules into functional structures, with applica-
tions that were never envisioned before [Srivastava and
Atluri (2002)]. Nano-mechanics deals with mechanics
problems associated with modeling, design, fabrication
and application of three-dimensional structures and sys-
tems with nanometer-scale dimensions. Nanoscale sys-
tems have a number of interesting features which distin-

1 Center for Aerospace Research & Education
University of California at Irvine
5251 California Avenue, #140, Irvine, CA 92612, USA

guish them from micro- and marco-scale systems.

An underlying issue in modeling the macroscopic me-
chanical behavior of nano-materials, based on molecu-
lar structure, is the large difference in temporal and spa-
tial scales. Computational molecular dynamics and con-
tinuum mechanics are on the opposite ends of the tem-
poral and spatial scale spectrum, and consist of highly
developed and reliable modeling methods. Computa-
tional continuum mechanics methods predict the macro-
scopic mechanical behavior of materials idealized as con-
tinuous media, based on known constitutive relation-
ships of the bulk material, while computational molec-
ular dynamic models predict molecular properties based
on known quantum interactions. However, a correspond-
ing model does not exist in the intermediate time and
length scale range, where the disparate length seals as-
sociated with molecular and continuum phenomena, and
disparate time-scales of the molecular and continuum
phenomena, may be present simultaneously. If a hierar-
chical approach is used to model the macroscopic behav-
ior of nano-materials, then a methodology is needed to
link the molecular structure and macroscopic properties.

However, systems with multiple length scales are ubiq-
uitous in science, for example, the sub-micron Micro-
Electro-Mechanical Systems (MEMS), or even Nano-
Electro-Mechanical Systems (NEMS), where the behav-
ior is determined by the interplay between the micron-
scale continuum mechanics and the nanoscale atomistic
processes. The continuum mechanics is governed largely
by the geometry of the device, while the atomistic pro-
cesses are important only in its smallest features. Con-
tinuum analyses are appropriate only for a large enough
system. The nano-scale is the length scale of individ-
ual atoms, i.e. 1-10 nm. At such small length scales,
continuum models are not flexible enough to accommo-
date the individual atomic scale processes. Alternative
to continuum analysis, the atomistic modeling and sim-
ulation calculates, individual atoms explicitly, and fol-
lows them during their dynamic evolution. Even though
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this atomistic method can trace all the details of atomic-
scale processes explicitly, it still has time and length
scale limitations from both small and large directions.
When the length-scale cannot be accessed either by con-
tinuum methods, since it is too small for averaging, or by
the atomistic methods (molecular dynamics or quantum
mechanics), since it is too large for simulations on the
current computers, these two approaches become inade-
quate, which has presented significant challenges to the
scientific community.

The amount of computer resources needed to investigate
a given volume of matter dramatically increases as one
goes from the top down to the bottom, i.e. from the
continuum, through the mesoscopic, the atomistic and
to the quantum methods. Quantum mechanics solves
Schrödinger’s equation for the electrons in the system.
Atomistic methods generally model atoms as spheres
which may be linked together to form molecules. By
assuming point charges on the nuclei of the atoms, elec-
trostatic interactions are included. Mesoscopic methods
are based on local groups of atoms, which generally rep-
resent many atoms with a considerable internal flexibil-
ity. Such groups can also be linked together to repre-
sent molecules. There exist a number of continuum ap-
proaches, such as the finite element method, the bound-
ary element method and the meshless method etc. The
length scales of the typical material system in multi-scale
structures are shown in Fig. 1. Multiscale modeling is
a unifying paradigm to enable the integration of the ba-
sic science and the engineering system. It allows for a
rigorous correlation of different science and engineering
models, representations, languages and metrics.

Carbon nanotubes have attracted considerable attention
since they were discovered by Iijima (1991). The extraor-
dinary properties of carbon nanotubes have motivated re-
searchers worldwide to study the fundamentals of this
novel material as well as to explore their applications in
different fields [Ajayan and Zhou (2001)]. Application
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Figure 1 : The length scales of the material system

of carbon nanotubes in nanoelectronics, nanocomposite
materials, and NEMS is a typical multi-scale problem,
which also impels the study on the multi-scale model that
directly links the continuum theories to atomistic simu-
lations.

This paper will review the current status of the progresses
and developments in computational nanotechnology and
multiscale simulation. The paper is organized as fol-
lows. Section 2 summarizes the simulation methods from
quantum level to atom level; and the long range interac-
tions are also included. Section 3 focuses on the multi-
scale methods. Section 4 discusses the simulation meth-
ods for nanotubes. Finally, conclusions are made in Sec-
tion 5.

2 Computational Techniques for Nanoscale Simula-
tions

Since the spatial and temporal scales of nanoscale sys-
tems and phenomena have shrunk to the level where
they can be directly addressed with high-fidelity com-
puter simulations and theoretical modeling, computa-
tional nanotechnology [Srivastava and Atluri (2002a, b);
Srivastava, Menon, and Cho (2001)] has become criti-
cally important in nanodevice development [Ajayan and
Zhu (2001)]. ab initio methods are being used exten-
sively, which can determine the electronic and atomic
structures of different materials just from its atomic co-
ordinates. However, the applications of ab initio meth-
ods are limited to very small-scale systems with only a
few hundred atoms. Alternatively, tight-binding molec-
ular dynamics (TBMD) and classical molecular dynam-
ics (MD) offer powerful ways to treat even large-scale
systems. Tight-binding molecular dynamics (TBMD) is
a semi-empirical technique, which is a blend of certain
features from both MD and ab initio methods. Molec-
ular dynamics (MD) refers most commonly to the situ-
ation where the motion of atoms or molecules is treated
in approximated finite difference equations of Newtonian
mechanics. In fact, ab initio and TBMD are the quan-
tum mechanics (QM) schemes. In this section, we sum-
marize the main simulation approaches in computational
nanotechnology.

2.1 Ab initio methods

Quantum mechanics is a means to understand and pre-
dict the interactions between atoms and molecules, and
to model the chemical reactions at that scale. It uses
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models based on the electronic structure. The solution of
the Schrödinger’s equation provides the electronic wave
functions. Other properties are then obtained from these
functions. The ab initio or first-principles method solves
the complex quantum many-body Schrödinger equation
with numerical algorithms [Payne, Teter, Allan, Arias,
and Joannopoulos (1992)]. This method is to regard
many-atom systems as many-body systems composed of
electrons and nuclei, and to treat everything on the ba-
sis of first-principles of quantum mechanics, without in-
troducing any empirical parameters [Ohno, Esfarjani and
Kawazoe (1999)]. The ab initio method provides more
accurate descriptions of quantum mechanical behavior of
materials. However, currently the system sizes are lim-
ited to only about a few hundred atoms. In the general ap-
proach of quantum mechanics, atoms are represented as
a collection of quantum mechanical particles, nuclei and
electrons; the state of a particle is defined by a wave func-
tion ψ, based on the well-known wave-particle duality.
The Schrödinger equation is [Born, and Huang (1954)]

Hψ(ri,RI) = Etotψ(ri,RI) (1)

with the full quantum many-body Hamiltonian operator

H = ∑
I

P2
I

2mI
+∑

I,J

ZIZJe2

RIJ
+∑

i

p2
i

2me
+∑

i,i

e2

ri j
−∑

I,i

ZI e2

|RI − ri|
(2)

where ψ is the energy eigenfunction corresponding to the
energy eigenvalue Etot , which represents the total energy
of the system, RI and ri are the nuclei and electron coor-
dinates, respectively, RIJ = |RI −RJ | and ri j =

∣∣ri − r j
∣∣.

PI and pi are the nuclei and electron momenta, respec-
tively. mI and me are nuclei and electron mass, respec-
tively. e is the electric charge of an electron, and ZIe is
the electric charge of the nuclei of atom I. The Hamil-
tonian operator in equation (2) is composed of five parts.
The first and third terms in equation (2) give the kinetic
energy of the nucleus and electron, respectively; the sec-
ond term gives the nucleus-nucleus Coulomb interaction,
the fourth term gives the electron-electron Coulomb in-
teraction, and the last terms gives the nucleus-electron
Coulomb interaction.

After solving for the energy Etot , the interatomic poten-
tial of the system can be obtained. Then, the interactions
FI , between atoms can be derived from

FI = − ∂V
∂RI

(3)

where V is the atomic interaction potential. Since the
kinetic energy of the nucleus is independent of its posi-
tion, V can be replaced by Etot in equation (3). Hence,
as long as Etot is determined, the interactions FI can be
obtained according to equation (3). The dynamic motion
for the atomic positions is still governed by Newtonian
or Hamiltonian mechanics, i.e.

mIR̈I = FI = − ∂V
∂RI

(4)

Equations (4) are approximated as finite-difference equa-
tions with discrete time step ∆t. Due to the small
scale involved, explicit integration algorithms such as the
standard Gear’s fifth-order predictor-corrector or Verlet’s
leapfrog methods [Verlet (1967), Berendsen, van Gun-
steren (1986)], which will be described in detail in sec-
tion 2.3, are commonly used to ensure high order accu-
racy.

In using the ab initio method, effective and applicable as-
sumptions are necessary. The most commonly used ap-
proximation is the Born-Oppenheimer adiabatic approx-
imation [Ohno, Esfarjani, and Kawazoe (1999)], which
assumes that the electrons are always in a steady state,
derived from their averaged motion, since their positions
change rapidly compared to the nuclear motion. Hence,
the motion of the electrons can be considered separately
from the motion of the nuclei, as if the nuclei were sta-
tionary. Using this approximation, one can reduce the
full quantum many-body problem to a quantum many-
electron problem:

Hel (RI)ψ(ri) = Eelψ(ri) (5)

where Eel is the ground state energy of a many-electron
system and can be regarded as the atomic interaction po-
tential, and

H = ∑
I

P2
I

2mI
+Hel (RI) (6)

It is very difficult to solve the eigen equation (5) exactly,
and approximate methods have been developed. The
most commonly used approaches are the Hartree-Fock
approximation [Fock (1930), Hartree (1928)] and the
density functional theory [Hohenberg and Kohn, 1964].

A detailed description and survey of the Hartree-Fock
approximation can be found in Clementi (2000) and
Ohno, Esfarjani and Kawazoe (1999). Here, we omit
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the details. The Hartree-Fock approximation is usually
used to describe electron-electron interaction effects. In
the Hartree-Fock approximation, the ground state of the
Hamiltonian H is obtained by means of the variational
principle with a normalized set of wave functions. Actu-
ally, the methodology seeks the solution by minimizing
the expected value of H with a trial function, similar to
the Ritz method. Many ab initio simulations used the
Hatree-Fock approximation, which translates a ployelec-
tronic problem into a single electronic problem. Then,
the Hartree-Fock equation can be written as

HHFψi (r) = εiψi (r) (7)

which is derived from the variational principle [Ohno,
Esfarjani and Kawazoe (1999)], where HHF is the
Hartree-Fock operator, which consists of the one-
electron Hamiltonian, the Hartree operator (or Coulomb
term), and the Fock operator (or exchange term). ψi is
the molecular orbit, and εi is the orbital energy of the
electron in this orbital. The molecular orbit is assumed
to be the linear combination of atomic orbits (LAO), as

ψi = ∑
α

ci
αφα (8)

where φα is the αth atomic orbital and ci
α is the coeffi-

cient. Adopting the closed shell model, the Hartree-Fock
equation can be conveniently written as a matrix form

FC = SCE (9)

The above equation is called Roothaan-Hall equation.
The Fock matrix F can be written as [Leach (1996)]

Fαβ =
∫

dvφα

[
−1

2
∇ 2

i −
M

∑
A=1

ZA

riA

]
φβ

+
K

∑
γ=1

K

∑
κ=1

Pγκ

[
(αβ |γκ)− 1

2
(αγ|βκ )

]
+Vαβ (10)

where the first term is the core energy, the second term is
energy arising from the Coulomb and exchange interac-
tion. It is noted that in this equation, the atomic units are
used. P is the charge density matrix and can be written
as

Pγκ = 2
N/2
∑
i=1

ci
γc

i
κ (11)

(αβ |γκ)and (αγ|βκ ) are two-electron integrals that may
involve up to four different basis functions (φα , φβ,φγ,φκ),
which may in turn be located at four different centers.
Vαβ is the influence of external fields, S is the overlap
integrals matrix with

Sαβ =
∫

dvφαφβ (12)

C is the coefficient matrix, and E is the orbital energy
diagonal matrix. The Hartree-Fock approximation does
not include correlation effects. It is more tractable for a
system of a small number of atoms and becomes more
complex for crystals. A better approximation, the local-
density approximation (LDA), gives ground-state prop-
erties almost perfectly and more efficiently. As an alter-
native to the Hartree-Fock approximation, the LDA re-
places the electron-electron interactions by some effec-
tive potential acting on the electrons. The LDA is an
approximating method, and cannot be applied to excited
states and highly correlated systems.

The density functional theory [Hohenberg and Kohn,
1964] has a rigorous mathematical foundation, provided
by two important works [Hohenberg and Kohn (1964),
Kohn and Sham (1965)]. Hohenberg and Kohn (1964)
have developed a theorem: the ground state energy (Eel)
of a many-electron system is a function of total electron
density, ρ(r), rather than the full electron wave function,
Ψ(ri), Eel(Ψ(ri))≡ Eel(ρ(r)). The Hamiltonian operator
Hand Schrödinger equation are given by

H (RI) = ∑
i

p2
i

2me
+∑

i, j

e2

ri j
−∑

I,i

ZIe2

|RI − ri| +∑
I,J

ZIZJe2

RIJ
(13)

H (RI)ψ(ri) = Eelψ(ri) (14)

The density functional theory (DFT) is derived from the
fact that the ground state total electronic energy is a func-
tional of the total electron density. However, it is very
difficult to formulate Eel(ρ(r)). Kohn and Sham (1965)
have shown that the DFT can be formulated as a single-
electron problem with self-consistent effective potential
including all the exchange-correlation effects of elec-
tronic interactions. Then the Kohn-Sham equation can
be written as

H1ψi (r) = εiψi (r) , i = 1, · · · ,Ntot (15)

which is the single-electron Schrödinger equation. Here,
H1 is the effective one-electron Hamiltonian, and can be
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written as

H1 =
p2

2me
+VH (r)+VNE (r)+VXC (ρ(r)) (16)

ρ(r) = ∑ |ψi (r)|2 (17)

In equation (16), the first term represents the electron
kinetic energy, the second term represents the electro-
static potential, the third term represents the nucleus-
electron interaction potential, and the last term denotes
the exchange-correlation potential and is a function of
the electron density. While the first three terms can be
obtained explicitly, the last one must be approximated.
The local density approximation (LDA) has been intro-
duced to approximate the unknown effective exchange-
correlation potential by Kohn and Sham (1965). The
LDA assumes that the exchange-correlation function cor-
responds to the homogeneous electron gas. This as-
sumption is only valid locally, when the inhomogene-
ity due to the presence of the nuclei is small. Once
ψi and εi are solved from equation (15), the total en-
ergy can be obtained. The eigenvalues correspond to the
quantum-mechanically possible electronic energy states
of the system, and the eigenfunctions contain informa-
tion about the electronic density distribution in the com-
puted space. The DFT-LDA method has been very suc-
cessful in predicting the properties of materials without
using any experimental inputs other than the identity (i.e.
atomic numbers) of constituent atoms [Car and Parrinello
(1985)]. The major advantage of using LDA is that the
error in the electron energy is second-order between any
given electron density and ground state density.

For practical applications, a single electron wavefunc-
tion with a plane wave and pesudopotential have been
implemented in the DFT-LDA method [Payne, Teter, Al-
lan, Arias, and Joannopoulos (1992)]. These systematic
approximations reduce the electronic structure problem
to a self-consistent matrix diagonalization problem. The
solution procedure requires an iterative diagonalization
process, which in general involves O(N 3) order of com-
putation and limits the DFT-LDA method to simple sys-
tems, and the system sizes currently are limited to only
about a few hundred atoms.

The limitation of the DFT-LDA method mainly comes
from two aspects: one is the use of plane waves as a ba-
sis to expand the electron wave functions; the other is the
inclusion of degrees of freedom from the electron wave
functions in the molecular dynamics. The former limits

the number of atoms used in the simulation due to the
large number of basis functions required in the calcula-
tion, and the latter leads to that the simulation time step
has to be chosen much smaller than that in simulations
with classical potential (about ten times smaller).

To reduce the order of computation, over the last three
decades, a lot of researchers attempted to develop rapid
and effective methods fro solving the Kohn-Sham equa-
tion [Li, Nunes and Vanderbilt (1993), Daw (1993),
Mauri and Galli (1994), Kresse and Furthmuller (1996)].
Major improvements have been made using the Car-
Parrinello MD (CPMD) method [Car and Parrinello
(1985)], cluster variation method [Kawazoe (2001)], and
conjugate gradient (CG) minimization methods [Payne,
Teter, Allan, Arias, and Joannopoulos (1992)]. CPMD
has significantly improved the computational efficiency
by reducing the order from O(N3) to O(N2). As shown
by Payne, Teter, Allan, Arias, and Joannopoulos (1992),
the CG method has further improved the efficiency by an
additional factor 2-3.

The ab initio method makes it possible to model a few
hundred atoms without any experimental inputs, and pro-
vides a powerful tool to investigate nanomaterials with
predictive power. Ab initio method possesses high ac-
curacy and transferability, due to there being no experi-
mental inputs. However, the high order of computation
limits the applicability of the ab initio method. There-
fore, other methods, such as the tight-binding method or
the classical molecular dynamics, are very important in
order to overcome the complexities of some materials.
In these methods, the potential parameters are extracted
from the experiment or ab initio calculations. However,
these methods are only valid in the region where they
are fitted. Nevertheless, they are useful to study complex
materials on the basis of these approximations.

A standard Ab initio routine is illustrated in Fig. 2.

2.2 Tight-binding methods

In the intermediate regime of a few hundred- to thousand-
atom systems, where classical molecular dynamics
method is not accurate enough, nor the ab initio com-
putations are feasible, tight-binding [Slater and Koster
(1954), Harrison (1980)], or semi-empirical quantum
mechanics based methods, provide an important link be-
tween the ab initio quantum mechanics based approaches
described above, and the classical atomistic force field
based methods, that will be described below.
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The tight binding method can handle a much larger sys-
tem than the ab initio method, and has the informa-
tion about the electronic structure of the system, while
maintaining a better accuracy than the MD simulation.
In its nature, the tight-binding method is very similar
to Hartree-Fock methods, but the computations of the
Hamiltonian and overlap matrix elements are based on
semi-empirical formulae. In this method, the atoms are
treated as classical particles that interact in part through
an effective potential exerted by the electrons that are
treated quantum mechanically. Hypothetical basis or-
bitals with the angular symmetries of single atom eigen-
states are centered around each atom. In the tight binding
method, the interatomic forces are evaluated in a straight-
forward way, based on the Hellmann-Feynman theorem
and the rest of the procedure is almost identical to the
MD simulation, that is the reason why the tight binding
method is also referred to as tight binding MD method
(TBMD).

The tight-binding method [Harrison (1980)] further sim-
plifies the quantum many electron problem by assuming
that the crystal potential is strong, such that when an ion
captures an electron during its motion through the lattice,
the electron remains at that site for a long time before
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Figure 2 : An illustration of ab initio routine

leaking, or tunneling, to the next ion site. During the cap-
ture interval, the electron orbits primarily around a single
ion uninfluenced by other atoms, so that its state function
is essentially that of an atomic orbital. Usually, the elec-
tron is tightly bound to its own atom. Hence, the total
energy (or the interatomic potential) can be expressed as
the sum of the eigenvalues of a set of occupied non-self-
consistent one electron molecular eigenfunctions, in ad-
dition to certain analytical functions [Foulkes and Hay-
dock (1989)]:

VTB =
Nocc

∑
n=1

εn + ∑
I<J

V rep (RIJ) (18)

The sum is over all occupied states Nocc up to the Fermi
level. The first term on the right side is the sum of the
energies of occupied orbits (i.e., band-structure energy),
which can be solved from the Schrödinger equation (5).
V rep is the repulsive inter-atomic potential, and the dou-
ble counting of the Coulomb and exchange-correlation
terms inherent in the eigenvalue sum (the first term) are
eliminated by the sum of the repulsive interatomic po-
tential V rep (the second term). Many papers [Wang and
Ho (1993, 1996), Lewis and Mousseau (1998)] described
how to obtain these two terms. Due to that V rep is de-
rived form the experiment, the TBMD method is a semi-
empirical method. The eigenvalues εn corresponding
to the one-electron states of a first principles Hartree-
Fock or density functional theory are obtained from a
nonorthogonal one-electron Hamiltonian

Hψn = εnSψn (19)

ψn = ∑
Iα

cn
IαφIα (20)

where S is the overlap matrix. It is noted that, in equation
(20), a linear combination of atomic orbitals (referred to
LACO), which is modulated by a Bloch wave-function
phase factor for a periodic lattice, is adopted in the wave
function: the one-electron wave function ψn is expanded
as a linear combination of atomic basis functions φJα , as
discussed in Hartree-Fock approximations. This ensures
that an electron in a tight-binding level will be found,
with equal probability, in any cell of the crystal, since its
wave function changes only by the phase factor, as one
electron moves from one cell to another. Here, n denotes
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the orbital number, and α denotes the basis functions (in
the minimal basis of silicon, these represent s, px, py,
and pz atomic orbits). The details of the basis func-
tions do not enter into the energy calculation, but only
the interactions between basis elements φIα that from the
overlap and Hamiltonian matrices. The matrix elements
within the overlap Sand Hamiltonian H matrices are ob-
tained by fitting the equivalent integrals within an exten-
sive database of the first-principles calculations to a par-
ticular parametric form

Sαβ (r IJ) =
〈
φIα
∣∣φJβ

〉
Hαβ (r IJ) =

〈
φIα
∣∣H ∣∣φJβ

〉 (21)

The function V rep is also obtained by fitting to a database
involving the experimental indirect band gap. The pa-
rameters for this fit are given by Bernstein and Kaxiras
(1997). Although the exact forms of the basis are not
known, the Hamiltonian and overlap matrix can be pa-
rameterized, and the total energy and electronic eigen-
values can be easily extracted from the Hamiltonian ma-
trix, which also contains the effects of angular forces
in a natural way. There are two approaches to per-
form parameterization process, one is fitting to results
from the ab initio methods [Xu, Wang, Chan and Ho
(1992), Mehl and Papaconstantopoulos (1996)], the other
is computing the matrix exactly based on the localized
basis [Liu (1995), Porezag, Frauenheim, Kohler, Seifert,
and Kaschner (1995), Taneda, Esfarjani, Li, Kawazoe
(1998)].

The process of solving for the coefficient cn
Iα is a gen-

eralized eigenvalue problem. For a given set of atomic
coordinates, the coefficients are found by diagonaliza-
tion. One-electron states are occupied up to Femi level.
The interatomic forces are evaluated in a straightforward
way, based on the Hellmann-Feynman theorem, and the
system’s dynamic evolution is governed by Hamilton’s
classical equation of motion from Newton’s second law:

mIR̈I = FI = −∂VT B

∂RI
(22)

After obtaining the force, atomic coordinates can be ad-
vanced through time, using the same algorithm as that
used for the ab initio method or the classical MD, i.e.,
the standard Gear’s fifth-order predictor-corrector or Ver-
let’s leapfrog methods, which will be described in detail
in section 2.3.

The TBMD is one of the fastest numerical quantum
methods containing electronic structure information, and
its application is extensive. Lewis and Mousseau (1998)
used it to study defects and disorder in covalently bonded
materials. Wang and Ho (1993) employed it to investi-
gate the structure, dynamics and electronic properties of
diamond-like amorphous carbon. Colombo (1998) pro-
vided a source code for TBMD simulations.

Since the brute force diagonalization is O(N 3), which
parallelizes poorly, in general, TBMD is an O(N 3) al-
gorithm. To reduce the order of computation (i.e., im-
prove the scale of computation), Khan and Broughton
(1989) implemented a fictitious Lagrangian to reducing
the order from O(N3) to O(N2). There is much discus-
sion in the literature about O(N) schemes for electronic
structure [Li, Nunes, and Vanderbilt (1993), Daw (1993),
Canning, Galli, Mauri, De Vita, and Car (1996), Ordejon
(1998)]. However, such methods often have problems
with situations in which states wander across the Fermi
level. Another way to improve the scale of the TBMD
is the parallel simulation [Kalia, Campbell, Chatterjee,
Nakano, Vashishta, Ogata (2000)]. The parallelization of
the TBMD code involves parallelizing the direct diago-
nalization (of the electronic Hamiltonian matrix) part as
well as the MD part. Parallelizing a sparse symmetric
matrix with many eigenvalues and eigenvectors is a com-
plex bottleneck in the simulation of large intermediate-
range system and requires new algorithms. A survey
of the parallel simulation can be found in Heffelfinger
(2000).

Although TBMD can consider the quantum structure of
electron, its accuracy is less than that of ab initio. Hence,
some researchers developed the first-principles molecu-
lar dynamics by combining the advantages of TBMD and
DFT-LDA (ab initio method) [Demkov, Ortega, Sankey,
and Grumbach (1995), Ortega (1998), Garcia-Vidal,
Merino, Peerez, Rincon, Ortega, and Flores (1994), Pear-
son, Smargiassi, and Madden (1993), Smargiassi, and
Madden (1994)]. This method showed a very good accu-
racy for the problems of defect [Smargiassi (1994)], and
lattice dynamics [Pavone, Karch, Schutt, Windl, Strauch,
Giannozzi, and Baroni (1993), Adler, Honke, Pavone,
and Schroder (1998)].

A major problem with the TBMD method is the way that
the parameterization of the Hamiltonian and the over-
lap matrices, and the function V rep limits its applicabil-
ity. Harrison (1989) has attempted to provide a mini-
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mal tight-binding theory with a set of universal param-
eters that could describe qualitatively a wide range of
materials and properties. However, this approach turns
out to be neither transferable nor accurate. Although fo-
cusing on tetrahedral solids, he emphasized the neces-
sity of including the nonorthogonality of the local envi-
ronment in multi-coordinated structures. This important
factor has generally been overlooked by those seeking a
transferable scheme. After that, Menon and Subbaswami
(1997) proposed a nonorthogonal tight-binding scheme
with minimal number of adjustable parameters, result-
ing in a transferable scheme applicable to clusters as well
as bulk systems. Although nonorthogonal tight-binding
molecular dynamics schemes are more accurate, they are
not easily converted to order O(N), and can typically
handle only systems with up to a few thousand atoms
[Menon and Subbaswami (1997)].

A standard TBMD routine is illustrated in Fig. 3.
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Figure 3 : An illustration of the TBMD routine

2.3 Classical Molecular Dynamics

Up to now, we know that atomistic and electronic-scale
simulations can be performed by means of ab initio or
semi-empirical methods such as tight-binding. However,

these methods are still restricted in their capability with
respect to both the number of atoms and the simulation
timescale. Classical molecular dynamics is an important
substitute to study longer-timescale phenomena of sys-
tems composed of larger numbers of particles, which is
much simpler but still an atomic scale method. Molecular
dynamics is a means to study matter at the atomic level
and to predict the static and dynamic properties from the
underlying interactions between the molecules. To go
from quantum mechanics to molecular dynamics requires
averaging over the electrons to obtain spring constants,
discrete charges and van der Waals parameters. It is pos-
sible to construct realistic classical potentials based on
ab initio calculations, experimental results or an empir-
ical model. A possible way is to fit the classical poten-
tials to contour maps of the total energy, which may be
obtained with an ab initio method by changing the posi-
tion of one atom while fixing the coordinates of all other
atoms. With the increase in computing power, the con-
nection between classical MD and ab initio calculations
are being made in a clear and rigorous fashion. Classical
molecular dynamics is an empirical method. Hence, it
is easy to implement in larger systems (million to billion
atoms). However, for different systems, different empir-
ical parameters may be needed, which limits its transfer-
ability.

The method of classical molecular dynamics was first
proposed by Alder and Wainwright (1957). Alder and
Wainwright applied the method to the simplest system-
hard spheres by first assuming an interatomic potential,
and found a liquid-solid phase transition in this hard-
sphere system. Later, the methods were also applied
to various systems with soft potentials [Rahman (1963)]
such as the Lennard-Jones potential. Classical MD de-
scribes system’s atomic-scale dynamics, where atoms
and molecules move, while interacting with many of
the atoms and molecules in the vicinity. The system’s
dynamic evolution is governed by Hamilton’s classical
equation of motion from Newton’s second law:

mIR̈I = FI = − ∂V
∂RI

(no sum on I) (23)

which is derived from the classical Hamiltonian of the
system,

H = ∑
I

P2
I

2mI
+V (RI) (24)
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where RI is the position of atom I, and V is the empirical
potential for the system. Each atom moves and acts sim-
ply as a particle that is moving in many-body force field
FI of other similar particles, which can also be obtained
from more accurate quantum simulation as described in
Sections 2.1 and 2.2. The atomic and molecular inter-
actions describing the dynamics are given by classical
many-body force-field functions. The atomic interaction
energy function V (RI) can be written in terms of pair and
many-body interactions, depending on the relative dis-
tances among different atoms [Daw and Baskes (1983,
1984)].

An alternate but equivalent approach is to solve the
Hamiltonian system of ordinary differential equations

dPI

dt
= −∂H

∂qI
(25)

dqI

dt
=

∂H
∂PI

(26)

where (qI , PI) are the set of canonically conjugate coordi-
nates and momenta, respectively. Symplectic integrators
[Gray, Noid, and Sumpter (1994)] have been developed
to solve the above Hamitonian equations of motion.

In MD simulations, the effects of finite system size and
surfaces are always a severe problem. Periodic boundary
conditions are usually employed to reduce these effects.
All the particles are put inside a unit cell, and if the par-
ticle goes outside the cell boundary, it is brought back in
from the opposite side of the cell. More descriptions of
the general techniques used in molecular dynamics can
be found in Allen and Tildesley (1989), Rapaport (1995),
and Leach (1996).

Classical molecular dynamics have been ap-
plied extensively. Some computer codes can
be available on the websites, such as CCP5 on
http://wserv1.dl.ac.uk/CCP/CCP5, Amber/Sander
on http://www.amber.ucsf.edu/amber/amber.html
(or http://amber.scipps.edu), NAMD on
http://www.ks.uiuc.edu/Research/namd, and LAMMPS
on http://www.cs.sandia.gov/sjplimp/lammps.html.

2.3.1 Short range interactions

As the simplest interatomic potential in MD simulations,
pair potentials are employed to qualitatively model di-
verse properties of materials, such as Buckingam poten-
tial [Wunderlich and Awaji (2001)], Morse potential [Ko-

manduri, Chandrasekaran, and Raff (1998)], and glue po-
tential [Duan, Sun and Gong (2001)]. A very widely used
inverse power model, the 12-6 Lennard-Jones (LJ) po-
tential, was introduced by Lennard-Jones (1924a, b) for
non-bond atomic interactions, as

VLJ = 4ε

[(
σ

RIJ

)12

−
(

σ
RIJ

)6
]

(27)

where ε denotes the bind energy (the minimum of
Lennard-Jones potential), and σ the equilibrium distance
between two unbonded atoms or monomers, RIJ denotes
the inter-atomic distance between atoms I and J. The
Lennard-Jones force (attraction or repulsion) between
two atoms can be written as:

FIJ = −∂VLJ

∂RIJ
= − 4ε

RIJ

[
12

(
σ

RIJ

)12

−6

(
σ

RIJ

)6
]

(28)

Girifalco and Lad (1956), and Girifalco (1992) employed
the Lennard-Jones potential for the carbon-carbon sys-
tem. Two sets of parameters have been used, one for a
graphite system [Girifalco and Lad (1956)] and the sec-
ond for an fcc crystal composed of C60 molecules [Giri-
falco (1992)]. The Lennard-Jones (LJ) potential is a non-
bond order potential, which accounts for the steric and
van der Waals non-bonded interaction.

To model more realistic materials, such as metals and
semiconductors with complex many-body interactions,
the pair potentials must be modified. Up to now, many
approaches emerged, to improve the pair potentials.
However, all of them fall into three categories, which are
introduced below respectively.

The first one is to develop potentials by following
the Born-Openheimer expansion (many-body potentials),
i.e., besides the pair potential, many-body potentials
should be added, such as Pearson [Pearson, Takai, Ha-
licioglu and Tiller (1984)], and Stillinger-Weber (SW)
[Stillinger, and Weber (1985)] potentials. The inter-
atomic potential V as an infinite sum over pair, triplet,
etc., can be expressed by the Born-Openheimer expan-
sion as:

V (R1,R2,R3, · · ·) =
1
2! ∑J �= ∑

I

V (2) (RIJ)+

1
3! ∑

K �=
∑
J �=

∑
I

V (3) (RIJ,RJK,RKI)+ · · ·+

1
n! ∑

Q�=
.. ∑

M �=
..∑

J
∑

I

V (n) (RIJ, · · · ,RIQ, · · · ,RMQ, · · ·) (29)
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V (2), V (3) . . . and V (n) are the interaction potentials of the
two-, three- and n-body interactions, respectively;and R IJ

is the distance between atoms I and J. It is noted that the
n-body potential decreases rapidly with the increase of n.
Therefore, in practice, the Born-Openheimer potential is
truncated at n=3. For covalently-bonded materials, Pear-
son takes the two-body component to be the Lennard-
Jones potential, while triplet interactions are represented
by an Axilrod-Teller-type three-body potential [Pearson,
Takai, Halicioglu and Tiller (1984)]. The SW poten-
tial, which involves both two-body and three-body inter-
atomic terms, is another example of the type of potential
that is used to effectively deal with the directional nature
of bonding in covalent materials. The SW potential can
be written as

VSW (R1,R2,R3, · · ·) = ∑
J �=

∑
I

V (2) (RIJ)

+∑
K �=

∑
J �=

∑
I

V (3) (RIJ,RIK) (30)

The exact form of these interactions V (2) and V (3) are
given in Stillinger, and Weber (1985). The potentials are
assumed to have a cutoff radius, i.e., any atom interacts
directly only with those atoms within a distance R cut from
it.

There are many different many-body empirical po-
tentials developed during last decades, such as AM-
BER [Cornell, et al., (1995)], CFF95 [Peng et al.
(1997)], CHARMM [Mackerell, et al. (1995)], Dreid-
ing [Mayo, Olafson, and Goddard (1990)], MMFF [Hal-
gren (1996)], MM2 [Allinger (1977), and Allinger, Yuh,
Lii (1989)], MM3 [Cui, Li, and Allinger (1993)], MM4
[Nevins, Lii, and Allinger (1996)], OPLS [Jorgensen,
et al. (1996)], SHARP [Bearpark, Robb, Bernardi, and
Olivucci (1994)], UFF [Rappe, et al. (1992)], and VAL-
BON [Cleveland, and Landis (1996)]. In these mod-
els, the total system potential energy V can be expressed
as a sum of several individual energy terms [Burkert
and Allinger (1982), Leach (1996), Rappe and Casewit
(1997)]:

V = Uρ +Uθ +Uω+Uτ +UvdW +Ues (31)

where Uρ, Uθ,Uω, and Uτ are energies associated with
bond stretching (two-body), angle variation (three-body),
inversion and torsion (four-body), respectively; U vdW and
Ues are associated with van der Waals and electrostatic

interactions, respectively. Additional energy terms asso-
ciated with electromechanical or optomechanical interac-
tions can be included in the same way. Different models
may include different terms. One can ignore or focus on
some selective terms of the total potential energy accord-
ing to the physics of a specific problem. MM2-MM4,
SHAPE, VALBON and UFF models have been applied
in the analysis of a variety of organic and inorganic sys-
tems. The Dreiding model has been used to analyze the
structure of fullerene and carbon nano-tube [Guo, Kara-
sawa, and Goddard (1991), Tuzun, Noid, Sumpter and
Merklet (1996)].

The second one is to attempt to model the local environ-
ment using electron density distributions, which results
in an addition energy, such as the embedded atom method
(EAM) [Daw and Baskes (1983, 1984)], and variable
charge molecular dynamics (VCMD) [Streitz and Mint-
mire (1994)]. VCMD is suitable to solving the boundary
problems [Campbell, Kalia, Nakano, Vashishta, Ogata,
and Rodgers (1999)]. However, it is more complicated
than EAM. Based on the quasi-atom approach [Scott, and
Zaremba (1980)], Daw and Baskes (1983) developed the
EAM potential for metals. In this approach, the energy
of an atom in the crystal is divided into two parts, which
can be written as

E (RIJ) = ∑
I

{
FI (ρI)+

1
2 ∑

J �=I

ϕIJ (RIJ)

}
(32)

where the second term on the right side, φIJ(RIJ), is a
two-body core-core interaction energy (pair potential),
and the first term is an additional energy needed to embed
the atom into the electron system in the lattice. ρ I is the
local electron density. The embedding energy is usually
fit to the form

FI = AIE
0
I ρI lnρI (33)

where ρI is obtained by functional fits to the electronic
configuration surrounding atom I, E 0

I is its sublimation
energy, and AI is a constant for atom I. Baskes (1992)
proposed a modified embedded atom method by taking
the non-sphere-symmetry of the electronic structure into
account. Based on variations of the EAM and SW po-
tentials, a wide variety of many-body potentials has been
proposed and used in classical molecular dynamics sim-
ulations. These potentials are expected to work well
within the range of physical parameters in which they
were constructed.
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EAM is applicable to interface and surface problems.
Tan and Yang (1994) used the modified EAM to per-
form the atomistic simulation of interface fracture, and
explained the origin of the crack-tip singularity. Baskes
and his coworkers [Baskes, Angelo and Bison (1994),
Gall, Horstemeyer, Van Schilfgaarde and Baskes (2000)]
applied the modified EAM to study the tensile debond-
ing and fracture of an aluminum-silicon interface, and
analyzed the effect of the micro-defect on the interface.
Fallis, Daw and Fong (1995) investigated the structure
of small Pt clusters on Pt(111) by using EAM. Zhou,
Lomdahl, Voter and Holian (1998) studied the three-
dimensional fracture via large-scale molecular dynam-
ics by appealing to EAM. Li, Gao, Qiao, Zhou and Chu
(2001) simulated the microcrack healing in copper by
means of EAM. Liu and Adams (1992), and Longo, Rey
and Gallego (1999) used different EAM to simulate the
structure of Ni clusters on Ni surface, respectively, and
the results depended on the parameters of embedding en-
ergy.

The third one is to introduce the local electronic environ-
ment directly into pair potentials, such as the Tersoff po-
tential [Tersoff (1986)]. The Tersoff potential was origi-
nally from Abell (1985), and then applied as a practical
potential energy formalism for modeling covalent mate-
rials by Tersoff (1986, 1989). Tersoff potential is a sum
of the energy on each bond. The energy of each bond
consists of a repulsive and attractive part. A bond order
function is embedded in the formulation. The bond order
depends on the local atomic environment such as angu-
lar dependency due to the bond angels. Brenner (1990)
modified the Tersoff potential by introducing additional
terms into the bond order function, which is mainly to
correct the overbinding of radicals. Wang, Tomanek and
Bertsch (1991) introduced local density approximations
(LDA) into a Morse-type potential for carbon systems,
which derived a more reasonable binding energy than
that from the Lennard-Jones potentials [Qian, Liu, and
Ruoff (2001)].

A major distinguishing feature of the Tersoff-Brenner po-
tential is that short-range bonded interactions are reac-
tive, so that a chemical bond can form and break dur-
ing simulation. The Tersoff-Brenner potentials [Brenner,
Sherendova, Areshkin (1998)] are used to model carbon
based systems using the type II parameterization, and
have been used in a wide variety of scenarios. This poten-
tial has been successfully applied in the analysis of for-

mation of fullerenes and their properties [Brenner, Harri-
son, White, and Colton (1991), Robertson, Brenner, and
Mintmire (1992), Robertson, Brenner, and White (1992,
1995)], surface patterning [Sinnott, Colton, White, and
Brenner (1994)], indentation and friction at nanoscale
[Harrison, White, Colton, and Brenner (1992, 1993a, b,
1995), Harrison, Colton, White, and Brenner (1993)],
calculating properties of carbon nanostructures [Brenner,
Shenderova, Areshkin, Schall, and Frankland (2002)],
and energetics of nanotubes [Robertson, Brenner, and
Mintmire (1992)].

Up to now, to authors’ knowledge, there is no universal
classical MD potential, which works for all the materials
and in all the scenarios. EAM type potentials are suited
for metals, while Stillinger-Weber (SW) and/or Tersoff-
Brenner potentials are suited for semiconductors.

Hereinbefore, we only consider the short range interac-
tions. In general, if the potential drops down to zero
faster than R−d, where R is the distance between two
atoms and d the dimension of the problem, it is called
short ranged. In shot range interactions, a cutoff radius
is introduced, only neighbored atoms up to the cutoff ra-
dius are taken into account for the calculation of inter-
actions, beyond the cutoff radius mutual interactions be-
tween atoms are neglected. In order to compensate for
the neglect of explicit calculations, long range correc-
tions may be introduced. Energy modifying terms in a
periodic molecular cell to account for long range interac-
tions were studied in Madelung (1918), Ewald (1921),
Deleeuw, Peram, and Smith (1980) and Heyes (1981)
with additional references therein.

2.3.2 Long range interactions

In the case of short range potentials, it is easy to calculate
the potential or force if one cuts it off at a certain range
and uses a neighbor list, that is called a particle-particle
method. The amount of calculation of this method is of
O(N) for an N-particle system. However, in the case of
long range potentials, like the Coulomb potential, inter-
actions between all particles in the system must be taken
into account, if treated without any approximation. This
leads to an O(N2) problem, which increases considerably
the execution time of a program for larger systems.

The Ewald sum method [Ewald (1921)] is used to de-
crease the amount of calculation in Coulomb systems by
accelerating the force calculation. The Ewald method is
limited to fully or partially periodic systems, but has been
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widely applied in studies of condensed matter, where it is
important to eliminate surface effects arising in a small,
isolated system. However, the computational task in this
method is still heavy in large system.

There are many algorithms to deal with this problem by
accelerating the force calculation, which can be clas-
sified into two categories: particle-mesh methods, and
hierarchical or multipole methods [Gibbon, and Sut-
mann (2002)]. Particle-mesh models are more widely
used in the field of cosmology than in MD. There are
two principal types of particle-mesh simulation mod-
els: the particle-mesh (PM) model, and the particle-
particle-particle-mesh (P3M) model [Birdsall, and Lang-
don (1985); Hockney and Eastwood (1981)]. The
particle-particle (PP) model uses the action at a distance
formulation of the force law, the PM model regards the
force as a field quantity – approximating it on a mesh –
and the P3M model is a hybrid of the PP model and PM
models. The PP method can be used for small systems
with long range forces or for large systems with short
range forces. In the previous subsection the PP method
is employed to calculate the short range forces. The PM
method, on the other hand is computationally fast, but
can only handle smoothly varying forces, and the result
is generally less accurate. The P3M method combines the
advantages of the PP and PM methods and enables large
correlate systems with long range force to be simulated.

Recently, a PP-MLPG/BIE method is developed to sim-
ulate the long range force by Atluri (2004), which will
be more accurate and faster than the P3M method. In
PP-MLPG/BIE method, the MLPG/BIE (Meshless Lo-
cal Petrov-Galerkin BIE) method replaces the particle
mesh method in P3M method. The MLPG/BIE method
was proposed by Atluri, Han and Shen (2003) by us-
ing the concept of the general meshless local Petrov-
Galerkin (MLPG) approach developed in Atluri et al
(1998, 2002a,b), and has been successfully applied in
3D fracture analysis and the crack growth [Han, Atluri
(2003a, b)]. Then one will have the best of the worlds of-
fered by pure MD and MLPG/BIE respectively: high res-
olution of individual encounters, combined with a rapid
meshless evaluation of the long range forces.

In this case, the total potential (Coulomb’s potential) of
the system is

Π =
1
2

N

∑
i=1

N

∑
j �=i

q j

4πε
∣∣r i − r j

∣∣ (34)

where N is the total number of the particles, ε is the per-
mittivity of free space, and q j is the charge of the par-
ticle j. The force of particle j on particle i is give by
Coulomb’s law as

fcoul
i j =

qiq j

4πε
r i − r j∣∣r i − r j

∣∣3 (35)

The inter-particle force is initially split into two contri-
butions:

fi = ∑
j �= i
j ∈ Ωsr

i

fsr
i j + flr

i (36)

The first sum represents the direct forces of the particle j
on particle i within the short range domain Ω sr

i , as shown
in Fig. 4, the shaded box represents the short range do-
main Ωsr

i , the first sum is over all the black particles. The
first term is obtained by the PP method. The second term
represents the long range forces which are obtained from
the MLPG/BIE method in the global domain.

Neighboring particles 

A generic particle i

Far-away particles

Figure 4 : Force splitting scheme

The long range interaction is assumed to be temporally
and spatially smooth enough, so that the long range con-
tribution to the interaction energy is found by solving
the Poisson’s equation for long range potential [Hockney,
Eastwood (1981)] by employing the MLPG/BIE method
[Atluri (2004)]. The derived boundary integral equations
for the long range potential and the gradient of the po-
tential are weakly singular. The PP-MLPG/BIE method
will be faster and cheaper than the P3M method, although
both of them are of O(N) computational complexity.

After obtaining the force on the particle i, we should
solve the equation of motion. The multiple time scales
method [Tuckerman et al. (1991)] in conjugation with
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Verlet’s leapfrog method is a natural choice to integrate
the equation of motion mi r̈ i = fi, because the force is al-
ready subdivided into short and long range components,

fi = fsr
i + flr

i (37)

where fsr
i varies fast and f lr

i varies slow. In this multiple
time step method, the short range forces are calculated
every time step δt by means of PP method, while the
long range forces are renewed every n time steps by using
MLPG/BIE method. However, it should be pointed out
that this multiple time scales method only focus on the
calculation of the interaction of the particles, the equa-
tion of motion mir̈ i = fiis still integrated every time step
δt.

Multipole methods [Pfalzner, and Gibbon (1996)] are
based on the observation that distant charges (or masses)
may be grouped together and substituted by a single mul-
tipole expansion, that lead to a considerable saving in
the number of interactions necessary to sum the poten-
tial or force. Two approaches proposed in mide-1980
belong to this category: hierarchical tree code method
[Appel (1985); Barnes and Hut (1986)], and fast mul-
tipole method (FMM) [Greengard and Rohklin (1987)].
The hierarchical tree code method is O(NlogN)-schemes
based on hierarchical grouping of distant particles. The
fast multipole method (FMM) is O(N)-schemes with
rounding-error accuracy. They serve a good basis for
the accelerating calculation of many-body systems gov-
ern by long-range potentials. A detailed discussion about
Multipole methods can be found in [Gibbon, and Sut-
mann (2002)].

Instead of accelerating the force calculation, the sym-
plectic method [Channell and Scovel (1990); Candy and
Rozmus (1991); and Wisdom and Holman (1991)] can
also be employed to improve the accuracy and reduce the
required computational time, which integrates the Hamil-
tonian rigorously and allow one to make the basic time
step larger.

2.3.3 Time integrators

In order to obtain a trajectory through phase space for
these atoms, an integrator is required for Newton’s laws
of motion. Numerical integration of the equations of
motion is performed either by explicit or implicit meth-
ods, such as the Verlet [Verlet (1967)], leapfrog [Hock-
ney (1970)], and velocity Verlet [Swope, et al. (1982)]
methods. Because of the lack of numerical stability, the

simple Euler scheme is not appropriate for MD simula-
tions. In Verlet method, the error will accumulate with
the time steps and may lead to a serious error in the fi-
nal results. The leapfrog method was proposed to avoid
this accumulation of errors. The leapfrog method is more
tractable than the Verlet method when one introduces ve-
locity scaling in a system with periodic boundary condi-
tions. However, the leapfrog method cannot handle the
velocity properly, the velocity Verlet method is usually
adopted. The explicit velocity Verlet method is very pop-
ular in MD simulations due to the fact that it is stable,
memory-efficient, and easily augmented to handle multi-
ple timescale MD. The following algorithm is iterated:

ṘI

(
t +

∆t
2

)
= ṘI (t)+

∆t
2mI

FI (t) (38)

RI (t +∆t) = RI (t)+∆tṘI

(
t +

∆t
2

)
(39)

FI (t +∆t) =
∂V

∂RI (t +∆t)
(40)

ṘI (t +∆t) = ṘI

(
t +

∆t
2

)
+

∆t
2mI

FI (t +∆t) (41)

At each iteration, each of the four steps is performed se-
quentially for every atom I in the system. After exit-
ing the last step, the simulation time is incremented by
∆t. Another popular implicit integration method for MD
is the predictor-corrector scheme, specially the Gear al-
gorithm [Gear (1971)], which can integrate the tempo-
ral evolution equation for longer times with more accu-
racy. For detailed description for the technique of the
molecular dynamics simulation, the readers are referred
to Rapaport (1995). Tucker and his colleagues [Tucker,
et al. (1991), and Tucker, and Berne (1992)] developed
the multi-time-step method to improve the accuracy and
reduce the required computational time.

The above descriptions are used for a microcanonical
simulation (NVE ensemble), where the total energy is a
conserved quantity. If the temperature or the pressure
should keep constant (the NVT or NTP ensembles), it
is not enough to only integrate Newton’s equations of
motion, the effect of a thermostat interacting with the
system should be considered. In canonical simulations
(NVT ensemble), to maintain the fixed temperature, one
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should use the equipartition theorem and equate the ki-
netic energy to 3

2 NkBT , where N is the total number of
the atoms in this system, kB is the Boltzman constant,
and T is the temperature. A number of more sophisti-
cated thermostats have also been developed, such as the
Langevin’s algorithm or Nosé-Hoover thermostat [Nosé
(1984)].

The standard molecular dynamics routine is illustrated in
Fig. 5.

The previous treatments, ab initio molecular dynamics,
tight binding, and classical molecular dynamics are all
deterministic. The state of the system is determined com-
pletely by the initial condition. These approaches are
useful in understanding stable structures, vibrations, and
growth at the atomistic level. Another method for treat-
ing complex systems is the Monte Carlo method, which
investigates problems by sampling from random distribu-
tions, and uses concepts of probability theory. It assumes
very idealized or simplified interaction parameters and
can treat larger number of atoms. Physical and chemical
properties of large systems are obtained by statistically
averaging over randomly moved particles. Hence, it is a
stochastic method. These techniques are now routinely
applied in almost every field, from biology to nuclear
physics to social studies. The detailed discussion about
this method is omitted here, interested readers are refer

Initial atomic configuration

Calculate interatomic 

distances 

Calculate interatomic 

forces

Move atoms

t+ t

Figure 5 : An illustration of classical MD routine

to Ohno, Esfarjani and Kawazoe (1999). Some of its ap-
plications can be found in Battaile et al. (1997), Bortz et
al. (1975), Huang et al. (1998), Gilmer et al. (2000) and
Singh et al. (1997).

3 Multi-scale Simulation

Recently, an intense effort has been devoted to the model-
ing and simulations of physical phenomena occurring on
a vast range of length scales. This endeavor has prompted
the development of multiscale modeling and simulation
strategies. Although constant increases in available com-
putational power and improvement in numerical algo-
rithms, even classical molecular dynamics methods with
very simple potentials are still limited to simulating on
the order of 106-108 atoms for a few nanoseconds. How-
ever, real materials are composed of ∼1023 atoms and
molecules, and sometimes it becomes necessary to per-
form far-larger-scale simulations. For phenomena on a
much larger space scale and longer time scale, one possi-
ble strategy is the multi-scale methods. The simulation of
large systems must be left to continuum methods. Con-
tinuum mechanics is used to predict the phenomena de-
scribed by uniform collective behavior of atoms, while
nano-mechanics is used to predict the phenomena de-
scribed by dramatic changes in the state of few atoms.
Multiscale modeling and simulations are being used in
diverse fields, such as materials science, nano/micro-
electronics, environmental remediation, and biotechnol-
ogy. The overall goal of multiscale modeling is to predict
the response of complex systems across all relevant spa-
tial and temporal scales. It is of interest to build models
that can seamlessly simulate multi-scale systems. Sev-
eral methods have been developed for the multiscale sim-
ulations. A recent review paper on the multiscale model-
ing in nano- and micro-mechanics of materials is written
by Ghoniem and Cho (2002).

The traditional approaches to couple spatial and tempo-
ral scales are the hierarchical approaches in which a hi-
erarchy of approaches and mathematical/computational
models with different physical levels of description is
pieced together, and the output of the smaller-scale mod-
els is used as input for the larger-scale models. Sinclair
(1971) modeled a bcc dislocation core by equilibrating
forces between atoms and continua with the continuum
region modeled with analytical techniques. Clementi
(1988) combined quantum mechanics, molecular dynam-
ics, and fluid dynamics to predict the tidal circulations. In
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a series of calculations, each calculation was used as in-
put to next up the length and time hierarchy. Kohlhoff,
Gumbsch and Fishmeister (1991) proposed a method in-
corporating a non-local elasticity theory for a transition
region connecting the lattice and continuum regions. Tan
and Yang (1994) used the molecular dynamics (EAM)
and finite element method to simulate interface fracture.
Gumbsch (1996) used the molecular dynamics and fi-
nite element method to simulate brittle crack propaga-
tion. Noguchi and Furuya (1997) matched displacements
between atomistic molecular dynamics and a microme-
chanics model to simulate elastic-plastic crack propaga-
tion. Sham and Tichy (1997) simulated thin film lubrica-
tion by means of molecular dynamics and finite element
method. However, many gaps still exist in these models.
Some of these methods were reviewed by Cleri, et al.
(1998). So far, no rational way exists to relate the phe-
nomena at the very small length scales with the macro-
scopic behavior.

An equivalent-continuum modeling approach was pro-
posed to model structure-property relationships of nano-
structured materials by [Odegard, Gates, Nicholson, and
Wise (2002)]. This method replaced discrete molecular
structures with equivalent-continuum representative vol-
ume models by equating the molecular potential energy
of nano-structured materials with the mechanical strain
energy of the representative volume element (equivalent-
energy). This method has been applied to determine
the effective geometry and effective bending rigidity of
a graphene sheet [Odegard, Gates, Nicholson, and Wise
(2002)]. The development of an equivalent-truss model
may be used as intermediate step in establishing the
equivalent-continuum model. Each atom in the molec-
ular model is represented by a pin-joint, and each truss
element represents an atomic bonded or non-bonded in-
teraction. The moduli of the truss elements are based
on the molecular mechanics force constants. If one
stops at this equivalent-truss model instead establishing
the equivalent-continuum model, the so-called molecular
structural mechanics is developed [Wang, et al. (2002);
Li, and Chou (2003)]. This method focuses mainly on
simulating atom mechanics using linear continuum ab-
stractions (trusses and bars). It preserves, and in some
cases increases, the number of degrees of freedom com-
pared to the full atomistic system. The expense is paid in
order to make the problem quasi-static and linear before
the application of a numerical solution procedure. So,

in the end, the atomic positions are easier to obtain than
from full molecular dynamics. Wang, et al. (2002)
derived the continuum mechanical properties of poly-
mer networks using this molecular structural mechan-
ics. The equivalent-continuum modeling is based on the
equivalent-energy, it can not determine the geometry and
material properties uniquely at the same time since all
the quantities are mixed in the energy, only one of them
can be determined given another one is predetermined
from the literatures or assumed. Every independent ma-
terial constant is determined by a different corresponding
boundary condition. This method is not self-consistent,
nor appropriate to large deformation.

With the advent of parallel computers, another approach
to the coupling of length scales, the handshaking ap-
proach, appears. In this approach, the problem is divided
into its natural components, each of which may be ad-
dressed by one or more processors. Then, the “handshak-
ing” between the different regions plays a important role
in this method. The “handshaking” is not just an algo-
rithmic issue but also one that requires physical insight
[Broughton, Abraham, Bernstein, and Kaxiras (1999)].
The FE/MD/TB model has recently been propounded by
Abraham and coworkers [Broughton, Abraham, Bern-
stein, and Kaxiras (1999), Abraham (2000)]. An exam-
ple of this handshaking approach for dynamic fracture
analysis is shown in Fig. 6. In this model, the prob-
lem is divided into three regions: continuum mechanics,
the implementation of which is via finite elements (FE);
atomistic statistical mechanics, implemented by molecu-
lar mechanics; and mean-field quantum mechanics rep-
resented by semiempirical tight bind (TB) (or ab initio
method). Each simulation is performed on a different
region of the domain, with a coupling imposed in “hand-
shake” regions where the different simulations overlap.
The method is designed for implementation on super-
computers via parallel algorithms, allowing the solution
of large problems. A Hamiltonian, Htot , is defined for
the entire system, which can be conceptually written as
[Broughton, Abraham, Bernstein, and Kaxiras (1999)]

Htot = HFE ({u, u̇} ∈ FE)
+HFE / MD

({
u, u̇,R,Ṙ

} ∈ FE / MD
)

+HMD
({

R, Ṙ
} ∈ MD

)
+HMD / TB

({
R, Ṙ

} ∈ MD / TB
)

+HTB
({

R, Ṙ
} ∈ TB

)
(42)
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The degrees of freedom are atomic positions, R, and their
velocity, Ṙ, for the TB and MD regions; and displace-
ments, u, and their time rates of change, u̇, for the FE
regions. This equation states that there are three separate
Hamiltonians for each subsystem as well as Hamiltoni-
ans that dictate the dynamics of variables in the hand-
shake regions. The subscripts “FE/MD” and “MD/TB”
denote such handshake regions.

Abraham, Broughton, Bernstein, and Kaxiras (1999) and
Abraham, Bernstein, Broughton, and Hess (2000) used
this method to simulate the propagation of a crack in a
brittle material, where the TB method is used to simulate
bond breaking at the crack tip, MD is used near the crack
surface, and the surrounding medium is treated with FE.
Rafii-Tabar, Hua, and Cross (1998) proposed a related
method by a stochastic coupling of a molecular-dynamics
region to a finite element region. The system is propa-
gated in time using a stochastic differential equation so
as to produce something resembling Langevin dynam-
ics. Simirnova, Zhigilei, and Garrison (1999) studied the
propagation of a laser-induced pressure wave in a solid
by combining the molecular dynamics and finite element
method. This method has been extensively applied in the
field of laser of ablation by Zhigilei and his colleagues.

Figure 6 : The multiscale modeling approaches that at-
tempt to link several computational approaches in a com-
bined model for dynamic fracture analysis. In this model,
electronic structure model (quantum mechanics) is com-
bined with a molecular dynamics model, which in turn is
embedded into a continuum model (discretized) by finite
elements [Noor (2002)].

Fig. 6 The multiscale modeling approaches that attempt
to link several computational approaches in a combined
model for dynamic fracture analysis. In this model, elec-
tronic structure model (quantum mechanics) is combined

with a molecular dynamics model, which in turn is em-
bedded into a continuum model (discretized) by finite el-
ements [Noor (2002)].

In the handshaking approach, the standard technique is to
a priori identify the atomistic and continuum regions and
tie them together with some interface boundary condi-
tions. The challenge for mesh generation is that the mesh
should smoothly transition between the true atomic lat-
tice in the MD region and the closely-packed FE meshes.
Too abrupt a crossover leads to unphysical behavior, such
as elastic wave reflections at the interface [Rudd and
Broughton (1998, 2000)]. In addition to the disadvan-
tage of introducing artificial numerical interfaces into the
problem, a further drawback of these models is their in-
ability to adapt to changes in loading an evolving state
of deformation. To connect seamlessly to molecular dy-
namics in the atomic limit, Coarse Grained Molecular
Dynamics (CGMD) has been developed as a substitute
for finite elements Rudd and Broughton (1998, 2000)],
which derived the equation of motion directly from finite
temperature MD through a statistical coarse graining pro-
cedure. Although CGMD reduced unphysical scattering
of waves traveling from the atomistic region into the CG
region as compare to FE, the short-wavelength wave still
reflected from the CG region. Moreover, the computa-
tional cost of the CG procedure is far beyond that of FE.

The quasicontinuum method was originally introduced
by Tadmor, Ortiz, and Phillips (1996). The theory of the
quasicontinuum furnishes a computational scheme for
linking the atomistic and continuum realms, and regards
that all the system is in the atomistic realm. The basic
idea is that every point in a continuum corresponds to a
region on the atomic scale, which is homogeneously dis-
torted according to the deformation gradient at the point.
The finite strain theory is employed in the continuum
realms. The details about the finite strain analysis can
be found in Atluri (1979, 1980). A hypothesis to con-
nect the continuum displacement field and the motions
of atoms must be employed. The Cauchy-Born hypothe-
sis is the basis for developing the quasicontinuum elastic
potentials, from the atomistic description of the system.
The Cauchy-Born hypotheses for crystals are equivalent
for homogeneous deformations [Born and Huang (1954),
Ericksen (1984)].

For simple Bravais lattice that has the centrosymmetric
atomic structure, the Cauchy-Born rule [Born and Huang
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(1954), Ericksen (1984)] gives

r IJ = FRIJ (43)

where F is the deformation gradient, and R IJ and r IJ rep-
resent the distances between two atoms I and J in the ref-
erence configuration and current configuration, respec-
tively. However, it does not for complex Bravais lattice
which can be given be means of a number of interpene-
trating simple Bravais lattices (sub-lattices) and does not
possess centrosymmetry, such as the hexagonal lattice. In
this case, the Cauchy-Born rule gives [Zanzotto (1996),
Martin (1975), Cousins (1978), Born and Huang (1954)]

r IJ = FRIJ +ςk (44)

where the internal variable ςk are shift vectors, with k
ranging from 0 to some integer N (There are N+1 sub-
lattices in the complex Bravais lattice. If atoms I, J are
in the same sub-lattices, ςk=0). ςk and F are independent
variables. At the static equilibrium state, the vectors ςk

are to be determined by the minimization of the energy
function, so as to reach an equilibrium configuration in
the deformed crystal. This means that the equilibrium
values of ςk can be written as functions of F. If focusing
on dynamical problems, one will avoid making any spe-
cific hypothesis on the behavior of ςk, what one need is
∂r IJ
/
∂F = RIJ from either (43) or (44).

Once the geometry of the deformed lattice vectors is
linked to the continuum deformation, a constitutive
model based on atomistic description can be constructed
by equating the continuum strain energy density to the
potential energy of the atomic system for a representa-
tive cell, divided by its volume. A continuum finite ele-
ment formulation is used to characterize the mechanical
response of a given system. The difference from stan-
dard finite element methodologies is that the constitutive
response of the system is obtained from an atomistic cal-
culation rather than an empirical phenomenological rule.
This type of approach is due to Kroner (1967). In this
method, a set of atoms making up a Bravais lattice has
selected from a subset. A triangulation of this subset al-
lows the introduction of finite element-like shape func-
tions at lattice points, allowing the interpolation of quan-
tities at intermediate points in the lattice. The finite mesh
permeates the entire system, right down to atomic dimen-
sions. In the inhomogeneous deformation region (such as
near defects), the atoms are expressed explicitly, while in

the homogeneous deformation region, the atoms are ex-
pressed implicitly by the representative atoms. An un-
derlying atomistic Hamiltonian is used to determine the
energy density of the system; a separate atomistic cal-
culation is required for each cell in their finite element
mesh. The energy of the atoms in inhomogeneous defor-
mation region is calculated by building the appropriate
complement of neighbors as in the classical MD method.
In the homogeneous deformation regions, the energy is
calculated using a single representative atom in the cen-
ter of a uniformly deformed crystal in which the defor-
mation gradient is F. This crystal is always made suffi-
ciently large that there are no boundary effects there. The
problem of the minimization of energy to find equilib-
rium configurations can be written in terms of a reduced
set of variables.

The method is made practical by approximating summa-
tions over all atoms, as using summation rules analogous
to numerical quadrature. The rules rely on the smooth-
ness of the quantities over the size of the triangulation to
ensure accuracy. The adaptivity rules allow the reselec-
tion of representative lattice points in order to tailor the
computational mesh to the structure of the deformation
field. The criteria for adaptivity are designed to allow full
atomic resolution in regions of large local strain, such as
near a defect.

Different variants of the quasicontinuum theory have
been developed in a series of publications where numer-
ous examples of application have also been presented,
such as the simulation of dislocations, grain boundary in-
teractions, nanoindentation, fracture, and the response of
ferroelectric materials to electrical and mechanical load-
ing. Recently, Shenoy (2003) extended the method to
dynamics at zero temperature, and a multiple-time-step
method was also developed for the time integrating.

There are several limitations in the quasicontinuum
method. In particular, cracks and defects are not allowed
to form, and since the simulation is carried out at zero
temperature, thermally-activated processes are not in-
cluded [Smith, Tadmor, Bernstein, and Kaxiras (2001)].
Moreover, interface energies between different phases
are not taken into account. Due to that the procedure
focused on approximating the energy but not the forces,
some non-physical forces are induced [Shenoy, Miller,
Tadmor, Rodney, Phillips, and Ortiz (1999)]. Actually,
another reason for these non-physical forces is the fact
that the finite element interpolation is a local interpola-
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tion, which disobeys the non-local physics property of
the atoms. In addition, in these approaches, the nodes
must coincide with atoms at the interface, therefore, the
resolution of the discretized continuum nodal space down
to the atom scale, that restrict the size of the continuum
and leads to smaller overall dimension problem. Chung
and Namburu (2003) circumvented the interface entirely
through homogenization theory. A lattice statics based
tangent-stiffness finite element method is developed for
the interface/transition region by Chung, Namburu, and
Henz (2004). Wagner and Liu (2003) presented a multi-
scale method for coupling molecular dynamics and con-
tinuum mechanics at finite temperature by using “bridg-
ing scale” decomposition and quasicontinuum method,
where the entire system is treated as a coarse scale one,
first; and then the entire system is treated as a fine scale
one, later sequentially. Multiple time steps are employed
for wave propagation in the coarse scale and fine scale. A
recent review of the quasicontinuum method discussing
its theory and applications can be found in Miller and
Tadmor (2002).

Recent, by virtue of the dynamic principle of virtual
work, an equivalent continuum is defined for dynami-
cally deforming atomistic system by Zhou and his col-
league [Zhou and McDowell (2002); Zhou (2003)].
Work-conjugate continuum stress and deformation fields,
mass distribution, and all other work- and momentum-
preserving kinetic quantities are specified for the equiva-
lent continuum. The resulted equivalent continuum fields
represent a continuum reinterpretation of the result of
a discrete MD calculation, and have exactly the same
number of independent degrees of freedom as the dis-
crete atomistic system. Hence, this equivalent continuum
fields is computationally intensive to obtain. This equiv-
alent continuum may offer a theoretical basis for linking
MD to continuum in multiscale simulation, just likes the
role of the Cauchy-Born hypotheses in the quasicontin-
uum method.

Other studies describing methods for multi-scale sim-
ulations of the atomistic and the quantum regimes or
continuum and the atomistic regimes can be found in
Hoover, De Groot, and Hoover (1992), Capaz, Cho
and Joannopoulos (1995), and Vanduijnen and Devries
(1996). Friesecke and James (2000) proposed a scheme
of bridging between continuum and atomic structure, fo-
cusing on nano-structures in which the size of one dimen-
sion is much larger than the other. Zhang, Klein, Huang,

Gao, and Wu (2002) developed virtual-internal-bond
(VIB) model to apply continuum mechanics to multi-
scale material problems, which incorporated a cohesive-
type law into constitutive equations. VIB model provides
an effective method to investigate crack nucleation and
propagation in engineering materials. Garikipati (2002)
embedded micromechanical models in the macrome-
chanical formulation by means of a variational multiscale
method. The resulting macromechanical formulation is
formed solely in terms of the coarse scale displacements,
but is influenced by the fine scale, which is governed
by micromechanical models; thereby it has a multiscale
character. Insepov et al. (1997, 2000) used a multiscale
method to study the effects of impact by atomic clusters
on crystal surfaces. In this method, an ensemble averag-
ing technique is employed to pass thermal and deforma-
tion from the atomistic region to the FE region.

As we know, in the multiscale simulation, the atomistic
method is employed where the displacement field varies
on an atomic scale, and the continuum approach is em-
ployed elsewhere. For the seamless multiscale simula-
tion, it is important to ensure that the elastic waves gen-
erated in the atomistic region can propagate into the con-
tinuum region. The continuum region cannot support
modes of short wavelength, which is less than the spacing
of the nodes. One source of finite size effects is the short
waves which are reflected back unphysically from an ar-
tificial interface or boundary, which may also produce
uneven heating across the interface. In order to minimize
such reflections, some interfacial conditions are proposed
[Cai et al. (2000), E and Huang (2001), Wagner and Liu
(2003)]. Cai et al. (2000), Wagner and Liu (2003) de-
rived the interface conditions as a generalized Langevin
equations. However, the time history integral is diffi-
cult to compute, especially for moving MD region. E
and Huang (2001) minimized boundary reflection in an
MD simulation with a reduced weighted sum of history
terms. We developed a method for the seamlessly cou-
pling of continuum and MD simulation at finite temper-
ature [Shen, and Atluri (2004)], where alternate interfa-
cial conditions between atomistic and continuum regions
were proposed by considering the fluctuation of atoms in
the continuum region. Their effectiveness in ensuring the
accurate passage of information between atomistic and
continuum regions was discussed.

Consider a multiscale system, including an atomistic re-
gion, which may contain inhomogeneities, and an equiv-
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alent continuum mechanics (ECM) domain, which is
defect-free. In the (ECM) region, the deformation is ho-
mogeneous, and thus can be approximated by an equiv-
alent continuum mechanics model as in quasicontinuum
method, where the individual atomic displacements are
not being solved using molecular dynamics. The mate-
rial in ECM is discritized into a set of nodes, which are
not necessarily coincident with the atoms. The positions
of the atoms in this region can be interpolated from those
of the nodes. Effectively, the ECM model involves an
averaging over the atomic degrees of the freedom that
are missing from the node. The meshless local Petrov-
Galerkin (MLPG) method is employed to solve for the
displacements of the nodes in the ECM region. This is
illustrated of in Fig. 7. In the ECM region, the nodes
can be taken to be arbitrary, and not necessarily be coin-
cident with the atoms. In MD region, the nodes are taken
to be the atoms themselves. In the ECM region, the solid
points represent the atoms, while the open points repre-
sent the nodes of the MLPG method. MLPG5 is imple-
mented in “ECM” region and MLPG2 is implemented in
MD region.
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Figure 7 : Illustration of ECM/MD multiscale simula-
tion.

The MLPG method, a truly meshless method devel-
oped by Atluri and his colleagues, is a simple and less-
costly alternative to the FEM and BEM [Atluri and Zhu
(1998), Atluri and Shen (2002a, b)]. Remarkable suc-

cesses of the MLPG method have been reported in solv-
ing the convection-diffusion problems [Lin and Atluri
(2000)]; beam problems [Raju, Phillips (2003)]; frac-
ture mechanics [Kim & Atluri (2000), Ching & Batra
(2001)]; strain gradient materials [Tang, Shen and Atluri,
(2003)]; three dimensional elasticity problems [Li, Shen,
Han and Atluri (2003)]; elstodynamic problems [Batra,
Ching (2002); Sellountos, and Polyzos (2003)]; elas-
todynamic problems in continuously nonhomogeneous
solids [Sladek, Sladek, Zhang (2003)]; thermoelastic-
ity [Sladek, Sladek, Atluri (2001)]; Navier-Stokes flows
[Lin and Atluri (2001)]; and plate bending problems [Gu
& Liu (2001), Long and Atluri (2002), Qian, Batra, and
Chen (2003a, b)]. A comparison study of the efficiency
and accuracy of a variety of meshless trial and test func-
tions is presented in Atluri and Shen (2002a, b), based
on the general concept of the meshless local Petrov-
Galerkin (MLPG) method. The recent review of the
MLPG method, regarding its theory and applications can
be found in Atluri (2004), and Atluri and Shen (2003).

As mentioned before, the displacement ui of an atom in
ECM region implies an average value of the atomic dis-
placement, it can not catch the thermal fluctuations. To
describe it more accurately, we assume that the “real”
displacement qi of the atom in the ECM region can be
expressed as:

qi = ui +δui (45)

where δui denote the atomic thermal fluctuations, and it
is assumed that δui << ui in ECM region. This decom-
position has the multiscale feature offered by pure MD
and the continuum respectively: short-wavelength fluc-
tuation of individual atom and long-wavelength wave of
the continuum. By means of this decomposition, the ef-
fects of the thermal fluctuations on the MD region lead
to the interface conditions. An optimal method was pro-
posed [Shen and Atluri (2004)] in both reducing the re-
flection of phonons and in lowering computational cost,
especially when the atomistic region moves with time.
A multiple time step method was employed for the time
integration in both MD and ECM region: the MD simu-
lation is advanced by k steps of size ∆tA, when the ECM
simulation is advanced for a step of size∆tB = k∆tA. The
stability of multiple time step method was studied in Be-
lytschko et al. (1979). Numerical experiments stated that
this method was very accurate and efficient. More details
about this multiscale method are given in Shen and Atluri
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(2004), and Atluri (2004).

For more examples about the multi-scale simulations and
their application, see the proceedings of the Training
Workshop on Multiscale Modeling, Simulation and Visu-
alization and Their Potential for Future Aerospace Sys-
tems [Noor (2002)]. In addition, two special issues of
CMES: Computer Modeling in Engineering & Sciences
(2002a, b) have been devoted to this topic. Srivastava,
Menon and Cho (2001) briefly reviewed computational
techniques and provided a few examples derived from
computer simulations of carbon nanotube-based molec-
ular nanotechnology. Chang and Guo (2002) also re-
viewed the recent advances in molecular dynamics and
Monte Carlo simulations.

Although substantial progress has been made in recent
years, multi-scale modeling method is still in its infancy,
and it still requires intensive efforts. As pointed by many
researchers, the main issues in the development of seam-
less multi-scale modeling methodology are still the lim-
itations on the length and time scale, and the numerical
accuracy and efficiency. Hence, a more accurate and effi-
cient multi-scale modeling methodology is still desirable,
and attracts many researchers.

4 Numerical Simulations in Carbon Nanotube

Since the debut of carbon nanotube (CNT) in 1991
[Iijima (1991)], it has stimulated activities in the inves-
tigation of the physical and mechanical properties and
their potential technological application. CNT can be
produced by an array of techniques, such as laser abla-
tion, arc discharge and chemical vapor deposition. They
possess exceptional properties, such as high stiffness and
strength, the ability to sustain large elastic strain, and
high thermal and electric conductivity.

A single-walled carbon nanotube (SWNT) can be viewed
as a result of rolling a graphene sheet, by specifying the
direction of rolling and the circumference of the cross-
section. A multi-walled carbon nanotube (MWNT) is
composed of concentric graphitic cylinders with closed
caps at both ends and the graphitic layer spacing is about
0.34 nm. In the graphene sheet, carbon atoms are ar-
ranged in a hexagonal array, and each has three nearest
neighbors. The atomic structure of nanotube is described
in terms of the tube chirality, or helicity, which is defined
by the chiral vector Ch and the chiral angle θ, as shown in
Fig. 8. After cutting the graphite sheet along the dotted

lines and rolling to form a nanotube, the two end nodes
of the chiral vector coincide. The chiral vector, i.e. the
roll-up vector can be expressed as a linear combination
of base vectors a1 and a2 of the hexagon:

Ch = na1 +ma2 (46)

where the integers (n, m), which uniquely define the type
of the nanotube, are the number of steps along the zigzag
carbon bonds of the hexagonal lattice. Three major cate-
gories of nanotube are defined based on the chiral angle
θ. The chiral angles are 0◦ and 30◦ for the two limiting
cases which are referred to as zigzag and armchair, re-
spectively. The chiral angle is between 0◦ and 30◦for chi-
ral. The zigzag nanotube is denoted by (n, 0) and the arm-
chair nanotube (n, n). The roll-up vector of the nanotube
also defines the diameter of the nanotube. The physical
properties of CNTs are sensitive to their diameter, length
and chirality [Dresselhaus, et al. (1997); Popov, et al.
(2000); Hernandez, et al. (1998)]. A survey about the
mechanics of carbon nanotubes can be found in Qian,
Wagner, Liu, Yu and Ruoff (2002). Here, we only review
the latest achievements in this field.

Figure 8 : Schematic diagram of a hexagonal graphene
sheet [Thostenson, et al. (2001)].

Ab initio, TBMD and classical MD methods were em-
ployed to perform the analysis of CNT. They are the “bot-
tom up” methods. By means of MD, Iijima, et al. (1996)
studied the structural flexibility of CNTs, and Yakob-
son, et al. (1997) simulated the high strain fracture in
CNTs. Hernandez, et al. (1998) investigated the elas-
tic properties of nanotubes using TBMD. Sanchez-Portal
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(1999) studied the elastic and vibrational properties of
CNTs resorting to density functional theory (ab initio).
Belytschko et al. (2002) simulated the nanotube fracture
using MD methods, and showed moderate dependence
of fracture strength on chirality. Dumitrica et al. (2003)
proposed a brittle bond-breaking CNT failure mechanism
by using the density functional theory (DFT). Troya,
et al. (2003) presented quantum mechanical studies of
CNT fracture using two different semiempirical meth-
ods. The different fracture mechanisms from quantum
mechanics and empirical potentials were explored. Guo
and Guo (2003) investigated the coupled mechanical and
electrostatic properties of single walled open CNTs un-
der applied electric field and tensile loading by means of
quantum mechanics and quantum-MD techniques. Quite
different failure mechanisms in electric or mechanical
loading were predicted. Guo and Guo (2003) simulated
an exceptional large axial electrostrictive deformation in
CNTs using Hartree-Fock and density functional theory.
The volumetric and gravimetric work capacities are pre-
dicted to be three and six orders higher than those of the
best known ferroelectric, electrostrictive, magnetostric-
tive materials and elastomers, respectively.

Multiwalled carbon nanotubes (MWNTs) have been pro-
posed as candidates for nanoscale molecular bearings,
spring, and oscillators. Zhao, et al. (2003) used MD to
study the energy dissipation mechanism for isolated sys-
tems of two coaxial carbon nanotubes, which may serve
as a nearly frictionless nano-oscillator. Guo, et al. (2003)
also performed MD simulations of a double walled CNT
oscillator to show that the rate of energy dissipation de-
pends on the commensuration and relative morphology
of the bitube. Zhang, et al. (2003) studied double-walled
CNTs-based bearings using MD simulations. Their re-
sults showed that dynamic effects dominate the friction
in these DWCNT bearings and the interlayer friction is
very small. In their simulations, the intralayer interac-
tion is described by a Brenner potential, and the inter-
layer interaction is represented by the registry-dependent
graphitic potential developed by Kolmogorov and Crespi
(2000). Qian et al. (2003) studied the nature of load
transfer in a single walled carbon nanotube bundle us-
ing a Lennard-Jones potential for the inter-tube inter-
actions. Their results revealed that the radial deforma-
tion strongly depended on the twist angle, which conse-
quently changes the nature of the contact and contributes
a new interlayer tribology. Zhang, et al. (2003) inves-

tigated the mechanical properties of SWNTs filled with
small fullerenes (C20, C36 and C60) using MD simu-
lation. The interaction between carbon atoms was de-
scribed by a combination of Brenner potential with a
two-body pair potential. Their mechanical properties de-
pended on the filling-density and the radius of the tube.
Such peapod types of structures may use in functional
nanoscale devices such as nano-pistons, nano-bearings,
nano-writing implements, or as a nano-capsule storage
system. Wei and Srivastava (2003) studied the transport
of long polymer molecules through CNT channels using
the MD simulations. A polymer molecule is adsorbed
into a NT due to van der Waales interactions, which is
modeled as Lennard-Jones potentials. Tersoff-Brenner
potentials were used for carbon-carbon and hydrogen-
carbon interactions.

As discussed in previous sections, these atomistic mod-
eling techniques are limited to systems containing a
small number of molecules or atoms and are usually
confined to studies of relatively short-lived phenomena,
from picoseconds to nanoseconds. Nanotubes domi-
nated by atomistic effects exhibit continuum-like be-
havior. Continuum-like methods that have been devel-
oped for nanoscale devices rely on parameterizations of
more detailed calculations, e.g. from molecular dynam-
ics and/or ab initio, to be fed into existing continuum
models such as shell [Yakobson, Brabec, and Bernholc
(1996)] and beam [Wong, Sheehan, and Lieber (1997)]
theories. Yakobson, Brabec, and Bernholc (1996) stud-
ied the nanotube instability problem by means of the
shell theory. Pantano and his colleagues (2003) used a
continuum/finite element approach to model the struc-
ture and the deformation of SWCNTs and MWCNTs.
In their works, individual tubes are modeled using shell
elements, the effects of van der Waals forces are simu-
lated with special interaction elements. Vodenitcharova
and Zhang (2003) investigated the effective wall thick-
ness of a single-wall carbon nanotube using the contin-
uum ring theory. Savinskii and Petrovskii (2002) calcu-
lated the vibration spectrum of a nanotube in the long-
wavelength limit as a function of the radius and thick-
ness of the nanotube, which was represented as an elastic
cylindrical shell of a finite thickness. Harik (2002) an-
alyzed the applicability of continuum-beam models and
continuum shell theories to the global mechanical behav-
ior of SWNTs, and concluded that the direct use of the
beam theory should be limited to SWNTs with very small
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diameters. Sudak (2003) presented a multiple column
model for the linearized column buckling of multi-walled
carbon nanotubes using the theory of nonlocal contin-
uum mechanics. Gao and Li (2003) developed another
continuum-based model for computing strain energies
and Young’s modulus of SWCNT, which is viewed as
a continuum hollow cylinder by rolling up a flat graphite
sheet that is treated as an isotropic continuum plate. In
their model, kinematics of finite deformations was em-
ployed with the Hencky strain and the Cauchy stress. All
these kinds of continuum models can be used to analyze
the static or dynamic mechanical properties of nanotubes.
However, these models neglect the detailed characteris-
tics of nanotube chirality, and are unable to account for
forces acting on the individual atoms. Moreover, devel-
opments such as these are difficult to extend to general
computational methods due to the strict assumptions as-
sociated with shell and beam theories.

The equivalent-continuum modeling approach [Odegard,
Gates, Nicholson, and Wise (2002)] and molecular struc-
tural mechanics method [Li, and Chou (2003)], as intro-
duced in section 3, were also used to treat nanotubes.
Odegard, et al. (2003) developed constitutive models for
nanotube-reinforced polymer composite system, where
the nanotube, the local polymer near the nanotube, and
the nanotube/polymer interface were modeled as an ef-
fective continuum fiber using the equivalent-continuum
modeling approach. Li and Chou (2003) used the molec-
ular structural mechanics method to model the deforma-
tion of single-walled CNTs, the elastic properties was ob-
tained. Then, they extended this method to simulate the
elastic behavior of multi-walled CNTs under tension and
torsion. The van der Waals interactions are accounted by
introducing a nonlinear truss rod model. They also ana-
lyzed the interfacial load transfer in the carbon nanotube
reinforced polymer composite by combining this method
and continuum FEM, where the CNT is modeled by the
molecular structural mechanics method, and the matrix
is modeled by FEM. CNTs are regarded as ideal rein-
forcing materials for high-performance nanocomposites
[Maryyama, and Alam (2002)], a review of nanotube-
based composites can be found in Thostenson, et al.
(2001).

Crystal elasticity theories based on the Cauchy-Born
rule, as discussed in quasicontinuum method in section 3,
have also been applied to CNTs. A continuum theory for
modeling carbon nanotubes was proposed by directly in-

corporating interatomic potentials into a continuum-level
constitutive relation on the basis of the Cauchy-Born rule
in Zhang, Huang, Gao, et al. (2002), same as the qua-
sicontinuum method. The SWCNT is assumed to be a
cylindrical with vanishing thickness. The theory was first
used to study the elastic modulus of a SWNT [Zhang,
Huang, Geubelle, et al. (2002)], and then applied to the
study of fracture nucleation in SWNTs [Zhang, Huang,
Gao, et al. (2002)]. It was also employed to investigate
the effect of nanotube radius on the constitutive model
of SWCNTs [Jaing, et al. (2003)], and the influence of
mechanical deformation on the electrical properties of
SWCNTs via the k-space tight-binding method [Liu, et
al. (2004)]. This method is limited to uniformly defor-
mation, and the cross-section of the SWCNT must re-
main circular during the deformation (since this method
required that the sequence of deforming a CNT and “un-
roll” the deformed CNT to a plane can be exchanged).
Therefore, this method can be applied to tension and tor-
sion, but not bend. Qian, Liu and Ruoff (2001) proposed
a combined continuum/MD models for the analysis of in-
teraction between C60 and nanotube, where the nanotube
is modeled as a cylindrical shell with finite thickness us-
ing the Cauchy-Born rule as in quasicontinuum method,
and the C60 is modeled directly by MD. The direct ap-
plication of the Cauchy-Born rule to CNT will result in
inconsistency, since a CNT is not space-filling, but com-
posed of a curved single-atom-thickness atomic layer.
Arroyo and Belytschko (2002) corrected this inconsis-
tency by introducing the exponential map from differen-
tial geometry. Using the modified Cauchy-Born rule, a
quasicontinuum method was developed for single layer
crystalline films, and the CNT is modeled as a continuum
membrane with no thickness. Good results for the bend-
ing of nanotubes were presented [Arroyo and Belytschko
(2002)]. However, it is not an easy task to evaluate the
exponential map for a complicated configuration.

5 Conclusion

The recent developments and applications of the multi-
scale modeling in nanomechanics and nanotubes are re-
viewed in this paper. Although many promising methods
are proposed, a number of challenges still remain, such
as the limitations on the length and time scale, the numer-
ical accuracy and efficiency, the self-consistency (or non-
reflection/seamless) of multiscale models. The numerical
accuracy depends on the accuracy of interactomic poten-
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tials, and the self-consistency depends on the interfacial
condition between MD/continuum or QM/MD.

The Cauchy-Born rule and energy-equivalent assump-
tion play important roles in reasonably bridging the con-
tinuum level to atomistic level. But the homogeneous-
deformation assumption limits the application of the
Cauchy-Born rule. The Cauchy-Born rule is only appro-
priate for bond interaction. For non-bond interaction, an
accuracy, efficiency and reasonable continuum model is
still lacking. The energy-equivalent assumption involves
too many assumptions and mixed many quantities; these
are the main reasons why there is a wide varieties in the
values of Young’s modulus/wall-thickness pair for SWC-
NTs in the literatures. Rather than Cauchy-Born rule and
energy-equivalent assumption, possibly, a new general-
ized multiscale method should be directly based on the
force (conservation of local linear momentum) and aver-
aging techniques (constitutive equations represent some
averaged behavior of collective atoms). For deriving the
electric properties of the nanomaterials, the simulation
must be taken down to quantum mechanics. An effective
electromechanical multiscale model may be helpful.

Nanomechanics is a developing field which is rich of nu-
merical, computational, physical and mathematical chal-
lenges. A novel and seamless multi-scale modeling
methodology will play a key role in the simulation and
design methodology for nanotechnology.
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Multiscale Simulation Based on The Meshless Local Petrov-Galerkin (MLPG)
Method

Shengping Shen1 and S. N. Atluri1

Abstract: A multiscale simulation technique based
on the MLPG methods, and finite deformation mechan-
ics, is developed, implemented, and tested. Several al-
ternate time-dependent interfacial conditions, between
the atomistic and continuum regions, are systematically
studied, for the seamless multiscale simulation, by de-
composing the displacement of atoms in the equivalent-
continuum region into long and short wave-length com-
ponents. All of these methods for enforcing the inter-
face conditions can ensure the passage of information
accurately between the atomistic and continuum regions,
while they lead to different performances at short wave-
lengths. The presently proposed Solution Method 2 re-
duces the phonon reflections at the interface, without
increasing the computational burden. Multiple length
scale, multiple time step, and meshless local Petrov-
Galerkin (MLPG) methods are used in the numerical ex-
amples.

1 Introduction

With the advances in materials synthesis and device pro-
cessing capabilities, the importance of developing and
understanding nanoscale engineering devices has dra-
matically increased over the past decade. Computational
Nanotechnology [ Srivastava and Atluri (2002a,b)] has
become an indispensable tool not only in predicting, but
also in engineering the properties of multi-functional
nano-structured materials. The elasto-dynamics is gov-
erned largely by the geometry of the device, while the
atomistic processes are important in its smallest features.
Continuum approaches begin to fail as the system size
approaches the atomic scale, and atomistic methods be-
gin to reach their inherent time and length-scale limita-
tions. The nano-scale is the length scale of individual

1 Center for Aerospace Research & Education
University of California at Irvine
5251 California Avenue, #140
Irvine, CA 92612, USA

atoms, i.e. 1-10nm. At such length scales, continuum
models are not flexible enough to accommodate the in-
dividual atomic scale processes. An alternative to con-
tinuum analysis is the atomistic modeling and simula-
tion (MD), in which individual atoms are explicitly fol-
lowed during their dynamic evolution. Even though this
MD can trace all details of atomic-scale processes, it has
its own set of limitations. When the length-scale can-
not be accessed by either continuum methods because
it is too small for averaging, or the atomistic methods
[MD or quantum mechanics (QM)] because it is too large
for simulations on the present day computers, these two
approaches become inadequate, and that has presented
significant challenges to the scientific community. The
length scales of the typical material system in multi-scale
structures are shown in Fig. 1.
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Figure 1 : The length scales of the material system

This paper is devoted to computational nanotechnol-
ogy and multiscale simulations, in both length and time
scales, as illustrated in Fig. 2, below [which is more
fully discussed in Shen and Atluri (2004) and Atluri
(2004)]. Molecular Dynamics (MD) Domains, Equiv-
alent Continuum Models (ECM), and Actual Contin-
uum Domains (ACD), will be linked through the device
of the Meshless Local Petrov-Galerkin (MLPG) Method
[Atluri and Zhu(1998), and Atluri and Shen (2002a,b)],
which is a cost-effective alternative to the traditional
finite-element & boundary-element methods, and which
offers the possibility of carrying out uniformly valid sim-
ulations of material properties for multi-scale systems at
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both larger length scales and longer times than the direct
atomistic calculations, and permits a reduction of the full
set of atomic degrees of freedom.

Seamless MD to CM  

Standard Newtonian MD Scheme:

1. Determine interatomic potential and forces

      (for long range interaction, O(n
2
))

2. Integrate the equations  of motion

    (atom by atom) 
0=+− ααα fum

MD ECM
Actual  
Continuum 

Actual  
Continuum ECM 

Potentials

MLPG/BIE MLPG5 MLPG2 MLPG5 MLPG/BIE 

PP-MLPG/BIE

PP-MLPG/BIE

ECM

Figure 2 : Seamless Multiscale Modeling

The role of computational nanotechnology [Srivas-
tava and Atluri (2002a,b); Srivastava, Menon, and Cho
(2001)], has become critically important in the nanode-
vice development [Ajayan and Zhu(2001)]. There are
two major categories of molecular simulation methods
for nanotechnology: classical molecular dynamics (MD)
and ab initio methods. MD treats the motion of atoms
or molecules in approximated finite difference equations
of Newtonian mechanics. In general, ab initio methods
give more accurate results than MD, but they are also
much more computationally intensive. A hybrid method,
tight-binding molecular dynamics (TBMD), is a blend of
certain features from both MD and ab initio methods. In
fact, ab initio and TBMD are the quantum mechanics
(QM) schemes. Despite constant increases in available
computational power and improvement in numerical al-
gorithms, even classical MD computations are still lim-
ited to simulating on the order of 10 6-108 atoms for a
few nanoseconds. The simulation of large systems must
be left to continuum methods. Several methods are de-
veloped for the multiscale simulation.

The quasicontinuum method, introduced by Tadmor et al.
(1996), and Chung, Namburu, and Henz (2004), gives a
theory for bridging the atomistic and continuum scales in
quasistatic problems. In this method, a set of atoms mak-
ing up a Bravais lattice is selected from a subset. A tri-

angulation of this subset allows the introduction of finite
element-like shape functions at lattice points, allowing
the interpolation of quantities at intermediate points in
the lattice. Thus, the problem of the minimization of en-
ergy to find equilibrium configurations can be written in
terms of a reduced set of variables. The method is made
practical by approximating summations over all atoms,
as using summation rules analogous to numerical quadra-
ture. The rules rely on the smoothness of the quantities
over the size of the triangulation to ensure accuracy. The
final aspect of the method is therefore the prescription
of adaptivity rules, allowing the reselection of represen-
tative lattice points in order to tailor the computational
mesh to the structure of the deformation field. The crite-
ria for adaptivity are designed to allow full atomic reso-
lution in regions of large local strain, for example, very
close to a dislocation in the lattice. This method is lim-
ited to the case of a zero temperature.

Another approach to the coupling of the length scales
is the FE/MD/TB model of Abraham (2000). In this
method, three simulations are run simultaneously, us-
ing the finite element method (FEM), molecular dynam-
ics (MD), and semi-empirical tight binding (TB). Each
simulation is performed on a different region of the do-
main, with a coupling imposed in “handshake” regions
where the different simulations overlap. The method is
designed for implementation on supercomputers via par-
allel algorithms, allowing the solution of large problems.
One example of such a problem is the propagation of a
crack in a brittle material. Here, the TB method is used
to simulate bond breaking at the crack tip, MD is used
near the crack surface, and the surrounding medium is
treated with FE. The challenge for mesh generation is
that the mesh should smoothly transition between the true
atomic lattice in the MD region and the closely-packed
FE meshes. Too abrupt a crossover leads to an unphysi-
cal behavior, such as elastic wave resonances at the inter-
face. The coarse-grained MD method proposed by Rudd
and Broughton (1998) derived a constitutive relationship
for the continuum, directly from the interatomic poten-
tial by using a statistical coarse graining procedure. This
method has high computational complexity. Wagner and
Liu (2003) presented a multiscale method for coupling
molecular dynamics and continuum mechanics by using
“bridging scale” decomposition and the quasicontinuum
method [Tadmor et al. (1996)].

Although substantial progress has been made in recent
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years, the multi-scale modeling method is still in its in-
fancy, and it still requires intensive efforts. As pointed
by many researchers, the main issues in the development
of seamless multi-scale modeling methodology are still
the limitations on the length and time scale, and the nu-
merical accuracy and efficiency. Hence, a more accurate
and efficient multi-scale modeling methodology is still
desirable, and such methodologies are currently being
pursued by many researchers, in contemporary literature.
In this paper, we propose a seamless multi-scale mod-
eling methodology, based on the meshless local Petrov-
Galerkin (MLPG) method.

2 The Meshless Local Petrov-Galerkin (MLPG)
Method and Radial Basis functions

Meshless methods, as alternative numerical approaches
to eliminate the well-known drawbacks in the finite el-
ement and boundary element methods, have attracted
much attention in recent decades, due to their flexibil-
ity, and due to their potential in negating the need for the
human-labor intensive process of constructing geometric
meshes in a domain

The MLPG method is a simple and less-costly alterna-
tive to the FEM and BEM [Atluri and Zhu (1998), Atluri
and Shen (2002a,b)]. The main objective of the meshless
methods is to get rid of, or at least alleviate the difficulty
of, meshing and remeshing the entire structure; by only
adding or deleting nodes in the entire structure, instead.
The meshless local Petrov-Galerkin (MLPG) method is
truly meshless, as no finite element/or boundary element
meshes are required in this approach, either for purposes
of interpolation of the trial and test functions for the so-
lution variables, or for the purpose of integration of the
‘energy’. All pertinent integrals can be easily evaluated
over over-lapping, regularly shaped, domains (in gen-
eral, spheres in three-dimensional problems) and their
boundaries. Remarkable successes of the MLPG method
have been reported in solving the convection-diffusion
problems; fracture mechanics; Navier-Stokes flows; and
plate bending problems. Recently, the MLPG method
has made some strides, and it is applied successfully in
studying strain gradient materials [Tang, Shen and Atluri,
(2003)), three dimensional elasticity problems [Li, Shen,
Han and Atluri (2003)], and elstodynamics [Batra, Ching
(2002)]. The MLPG method was also extended to solve
the boundary integral equations [Atluri, Han and Shen
(2003), and Han, Atluri (2003)].

Six different nodal-based local test functions may be
selected, which lead to six different MLPG meth-
ods. Based on the MLPG concept, these variants of
the MLPG method are labeled as MLPG1, MLPG2,
MLPG3, MLPG4, MLPG5, and MLPG6, respectively.
Among them, there are three methods that avoid the
domain integral in the weak-form, over the nodal test-
function domain Ωs: MLPG2 (wherein the local, nodal-
based test function, over a local sub-domain Ω s cen-
tered at a node, is a Dirac’s Delta function); MLPG4
(wherein the local, nodal-based test function, over a lo-
cal sub-domain Ωs centered at a node, is the modified
fundamental solution to the differential equation); and
MLPG5 (wherein the local, nodal-based test function,
over a local sub-domain Ωs centered at a node, is the
Heaviside step function). MLPG4 (which is synonymous
with the Local Boundary Integral Equation method) in-
volves singular integrals; while the collocation method,
(i.e. MLPG2), is notorious for the sensitivity of the solu-
tion to the choice of proper collocation points. However,
MLPG5 does not involve either a domain, or a singular
integral, to generate the stiffness matrix; it only involves
the regular boundary integral. Thus, it is a highly promis-
ing MLPG method while, numerical examples validate
that the MLPG5 method is fast, accurate and robust.

In summary, the MLPG is a truly meshless method,
which involves not only a meshless interpolation for the
trial functions [such as MLS, PU, Shepard function or
Radial Basis Functions(RBF)], but also a meshless in-
tegration of the weak-form (i.e. all integrations are al-
ways performed over regularly shaped sub-domains such
as spheres, parallelepipeds, and ellipsoids in 3-D). In the
conventional Galerkin method, the trial and test functions
are chosen from the same function-space. In MLPG, the
nodal trial and test functions can be different: the nodal
trial function may correspond to any one of MLS, PU,
Shepard function, or RBF types of interpolations; and
the test function may be totally different, and may corre-
spond to any one of MLS, PU, Shepard function, RBF, a
Heaviside step function, a Dirac delta function, the Gaus-
sian weight function of MLS, a special form of the funda-
mental solution to the differential equation, or any other
convenient function, in the support domain, Ω te, of the
test function. Furthermore, the physical sizes of the sup-
ports (Ωtr and Ωte, respectively) of the nodal trial and
test functions may be different. These features make the
MLPG method very flexible. The MLPG method, based
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on a local formulation, can include all the other meshless
methods based on global formulation, as special cases
[see Atluri, and Shen (2003)].

In this paper, we choose the local radial basis functions
[Hardy (1971), Wendland (1999), Liu and Gu (2001)] to
interpolate the trial functions, because of its Kronecker
Delta property. Consider a continuous function u(x) de-
fined in a domain Ω, discretized by a set of nodes. An in-
terpolation of u(x) from the neighboring nodes of a point
xα within the domain Ω, using RBFs augmented by a
polynomial basis, can be written as

u(x) =
n

∑
i=1

Ri (x)ai (xα )+
m

∑
j=1

p j (x)b j (xα)

= RT a+PT b (1)

where Ri (x) is the radial basis function, p j (x) is a mono-
mial in the space coordinates, n is the number of nodes in
the neighborhood of xα, m is the number of polynomial
basis functions (usually m < n), and a i (xα) and b j (xα)
are the coefficients for Ri (x) and p j (x), respectively, cor-
responding to the point xα. The number of the neighbor
nodes of xα is not greater than the total number of nodes
in the global domain. The vectors are defined as

aT = [a1,a2, · · · ,an]
bT = [b1,b2, · · · ,bm]
RT = [R1 (x) ,R2 (x) , · · · ,Rn (x)]
PT = [p1 (x) , p2 (x) , · · · , pm (x)] (2)

The radial basis function has the following general form

Ri (x) = Ri (ri) (3)

where ri = ‖x−xi‖. The polynomial term is added to
ensure the consistency and the condition of the non-
singularity of the RBFs approximation, which should sat-
isfy the following constraints

n

∑
i=1

p j (xi)ai = 0, j = 1,2, · · · ,m (4)

The coefficients are determined by ensuring that the in-
terpolation passes through all n scattered nodes within
the influence domain:

u(xk) =
n

∑
i=1

Ri (xk)ai +
m

∑
j=1

p j (xk)b j, k = 1,2, · · · ,n

(5)

Equations (5) and (4) can be expressed in matrix form

A
{

a
b

}
=
{

ue

0

}
(6)

where

A =
[

R0 P0

PT
0 0

]
(7)

R0 =




R1 (x1) R2 (x1) · · · Rn (x1)
R1 (x2) R2 (x2) · · · Rn (x2)
...

...
...

...
R1 (xn) R2 (xn) · · · Rn (xn)




n×n

(8)

P0 =




p1 (x1) p2 (x1) · · · pm (x1)
p1 (x2) p2 (x2) · · · pm (x2)
...

...
...

...
p1 (xn) p2 (xn) · · · pm (xn)




n×m

(9)

ue = [u1,u2, · · · ,un]
T (10)

Then, from equation (6), the coefficients can be obtained.
Finally, the interpolation is expressed as

u(x) =
[

RT (x) PT (x)
]
A−1

{
ue

0

}
= φφφ (x)ue (11)

where the matrix of the shape functions φ (x) is defined
by

φφφ(x) =
[
φ1 (x) ,φ2 (x) , · · · ,φi (x) , · · · ,φn (x)

]
(12)

with

φk (x) =
n

∑
i=1

Ri (x) Âik +
m

∑
j=1

p j (x) Â(n+ j)k (13)

where Âik represents the (i,k) element of matrix A−1.

The widely used RBFs include multiquadrics (MQ),
Gaussian (EXP), and thin plate splines (TPS) forms, and
so on. In this paper, we will employ the multiquadrics
(MQ) form:

Ri (x) =
(
r2

i +c2)β
(14)

c and β are the shape parameters. Here, we choose c = 1,
β = 1.03 or c = 2, β = 1.99.
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3 The MLPG Method for Multiscale Simulation

In this section, a finite deformation model based on the
atomistic physics will be developed, for use in the ECM
region.

In continuum mechanics, the stress at a material point
is a function of the ‘state’ variables, such as strain, and
its gradients, at the same point. In order to formulate
a constitutive law for an equivalent continuum model
(ECM) from the atomic forces, a hypothesis to connect
the continuum displacement field and the motions of
atoms must be employed. The Cauchy-Born hypothe-
sis is the basis for developing the ECM elastic potentials,
from the atomistic description of the system. In the ab-
sence of slips, phase transitions, twinning or other inelas-
tic phenomena, the Cauchy-Born hypotheses for crystals
are equivalent for homogeneous deformations (Ericksen,
1984). Once the geometry of the deformed lattice vec-
tors is linked to the continuum deformation, a constitu-
tive model based on atomistic description can be con-
structed by equating the continuum strain energy density
to the potential energy of the atomic system for a repre-
sentative cell, divided by its volume, as in Tadmor et al.
(1996).

In this paper, first, we will develop an MLPG tangent-
stiffness method for the ECM region, in which it is as-
sumed that the state of deformation is homogeneous and
can be well-characterized by the local deformation gra-
dient F. The inhomogeneous deformation, such as near
defect cores, will be accounted for by the pure molecular
dynamics (MD). The whole idea is that: in the ECM,
MLPG5 or MLPG1 tangent-stiffness method will be
employed; in the MD region, MLPG2 tangent-stiffness
method will be employed.

Both of these, the ECM and MD regions, will be linked
through the device of the meshless local Petrov-Galerkin
(MLPG) method, which will thus offer the possibility
of carrying out uniformly valid simulations of material
properties for multi-scale systems at both larger length
scales and longer times than direct atomistic calcula-
tions, and permits a reduction of the full set of atomic
degrees of freedom; thus inching towards almost O(N)
algorithms. This is illustrated of in Fig. 3. In the ECM
region, the nodes can be taken to be arbitrary, and not
necessarily be coincident with the atoms. In MD re-
gion, the nodes are taken to be the atoms themselves.
In the ECM region, the solid points represent the atoms,

while the open points represent the nodes of the MLPG
method. MLPG5 will be implemented in “ECM” region
and MLPG2 will be implemented in MD region.

tr

te

s

ECM Region 

( )
MD Region 

tr

Figure 3 : Illustration of multiscale simulation.

The dynamic motion for atomic positions are governed
by Newtonian mechanics and described by molecular dy-
namics. The multi-scale materials are discritized into
a set of nodes. In the molecular dynamics region, the
position of the atom can be interpolated by the mesh-
less interpolation (the moving least square or radial basis
functions) of the nodes, similar to the displacement in
the continuum mechanics region. The atomic forces are
analytic derivatives of the inter-atomic potential (Born-
Oppenheimer expansion). In the ECM, the atomic en-
vironment is characterized by the deformation gradient
there. Each continuum point is taken to represent a large
region on the atomic scale, which is homogeneously dis-
torted according to the deformation gradient at the point.
The constitutive response in this region is obtained from
the atomistic calculation rather than a phenomenological
rule, in a way similar to the quasicontinuum method pro-
posed by Tadmor et al. (1996), and Chung, Namburu,
and Henz (2004).

By means of the concept of the MLPG, a local weak form
(in subdomain Ωs, as in Fig. 3) for the Newton’s law of
motion (conservation of linear momentum) will be used
to derive a system of equations for multi-scale materials
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modeling. In this paper, we choose radial basis function
to be the interpolation scheme, due to its convenience
in this case and their Kroneck Delta property [Atluri &
Shen, (2002a, b, 2003)].

In classical continuum mechanics, a point X in the un-
deformed body Ω0 in the reference frame is mapped to a
point x in its current shape Ω in the current frame. The
deformed configuration of the body is described by a dis-
placement function u(X), which represents the displace-
ment at point X, as

x = X +u(X)

The deformation gradient is defined by

F =
∂x
∂X

= I +
∂u
∂X

to map infinitesimal material vector from the undeformed
body Ω0 into the deformed one Ω. Here, I is the identity
tensor.

In the molecular dynamics region, the initial position of
an atom I is denoted as X I . The current configuration of
the atom is described by a displacement u which depends
on X, and can be written as

xI = XI +uI (15)

where uI =u(XI).

The distance between two atoms I and J in the reference
configuration can be written as

RIJ = XJ −XI (16)

The distance between two atoms I and J in the current
configuration can be written as

r IJ = xJ −xI (17)

According to the Cauchy-Born rule (Ericksen, 1984),
for simple Bravais lattice that has the centrosymmetric
atomic structure, we have

r IJ = FRIJ (18)

However, it does not hold for a complex Bravais lattice,
which can be described by be means of a number of in-
terpenetrating simple Bravais lattices (sub-lattices) and

does not possess centrosymmetry, such as the hexagonal
lattice. In this case, the Cauchy-Born rule gives [Zan-
zotto (1996), Martin (1975), Cousins (1978), Born and
Huang (1954)]

r IJ = FRIJ +ςςςk (19)

where the internal variables ςςςk are shift vectors, with k
ranging from 0 to some integer N (There are N+1 sub-
lattices in the complex Bravais lattice. If atoms I, J are in
the same sub-lattices, ςςςk = 0). ςςςk and F are independent
variables. At the static equilibrium state, the vectors ςςςk

are to be determined by the minimization of the energy
function, so as to reach an equilibrium configuration in
the deformed crystal. This means that the equilibrium
values of ςςςk can be written as functions of F. In this pa-
per, which focuses on dynamical problems, we will avoid
making any specific hypothesis on the behavior of ςςςk.
As discussed later [see equation (98)], what we need is
∂r IJ
/
∂F = RIJ from either (18) or (19).

It is noted that, in order to apply the Cauchy-Born rule
to nanotubes or fullerenes, a more general exponential
mapping procedure like the one in Arroyo and Belytchko
(2002) should be used. That will be taken into account as
we apply the present multiscale simulation to nanotubes.

The right Cauchy-Green strain tensor is defined by

C = FT F (20)

and the Green strain tensor is defined by

E =
1
2

(C− I) (21)

The kinematics of the deformation is characterized by the
deformation gradient. The constitutive nature of the ma-
terial is obtained through the strain energy density func-
tion W which relates the energy at a point to the local
state of deformation there. It may be shown that W can
only be a function of F, from the hypothesis of locality
and use the entropy production inequality. Moreover, ac-
cording to the postulate of material frame indifference, it
can be shown that the dependence of W on F can only be
through the right Cauchy-Green tensor C.

Following the classical continuum mechanics, the second
Piola-Kirchhoff stress S can be defined as

S=
∂W
∂E

= 2
∂W
∂C

(22)
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C and S are invariant with respect to rigid-body rotation.

The conservation of linear momentum leads to:

∇ · (SFT )+ f = ρw (23)

where ∇· denotes the divergence taken with respect to the
material frame, f is the body force, ρ is the density, and
w is the acceleration, i.e., w = d2u

dt2 .

The conservation of angular momentum leads to:

S= ST (24)

The tangent stiffness material-moduli can be defined as

D =
∂2W

∂E∂E
= 4

∂2W
∂C∂C

(25)

More details about the finite strain analysis can be found
in Atluri (1979, 1980).

The local weak form of equation (23) can be written as∫
Ωs

[
∇ · (SFT )+ f−ρw

]
VdΩ = 0 (26)

where V is the test function in the local domain Ω s. The
local symmetric weak form can be written as
∫

Ωs

(SKLxl,L)Vl,KdΩ+
∫

Ls

SKLxl,LnKVldΓ

+
∫

Γsu

SKLxl,LnKVldΓ

=
∫

Γst

SKLxl,LnKVldΓ+
∫

Ωs

( fl −ρwl)VldΩ (27)

where n is the unit normal to the local boundary surface
Γs of Ωs. The corresponding MLPG5 weak-form ( when
the test functions are taken to Heaviside functions) is :∫
Ls

SKLxl,LnKdΓ+
∫

Γsu

SKLxl,LnKdΓ

=
∫

Γst

SKLxl,LnKdΓ+
∫

Ωs

( fl −ρwl)dΩ (28)

Actually, the MLPG5 [equation (28)] can be directly de-
rived from the conservation of linear momentum in an
arbitrary local domain, which is the basis of the finite
deformation theory. The physical basis of the MLPG5 is
the conservation of linear momentum in an arbitrary lo-
cal domain, and that of the MLPG2 is the conservation
of linear momentum on arbitrary point.

A corresponding continuous interpolation will replace
the piece-wise function for the position of the atom in
the ECM region,

x =
N

∑
α=1

φα (X) xα (29)

xα,α = 1, 2, . . .,N, in equation (29), are the nodal values.
φα (X) is the RBF shape function.

Assume that there are N1 atoms in region A (MD), and
N2 in region B (ECM). The displacements of atoms I in
the Region A are denoted by qI (1 ≤ I ≤ N1). The dis-
placements of atom i in the Region B are denoted by u i

(1 ≤ i ≤ N2), which are interpolated from the displace-
ments of the nodes in region B, as

ui = u(Xi) =
N

∑
α=1

φα (Xi)uα (30)

Here, uα, α=1, 2,. . . , N, are the nodal values. It is noted
that N is less than the amount of atoms of Region B, i.e.,
N ≤ N2, and the node is not necessarily an atom. The dis-
placement ui of an atom in region B implies an average
value of the atomic displacement, and can not catch the
thermal fluctuations.

3.1 The Atomistic Constitutive Law for Homogeneous
Deformation and MLPG5, in ECM

The classical MD describes the system’s atomic-scale
dynamics, where atoms and molecules move, while in-
teracting with many of the atoms and molecules in the
vicinity. The system’s dynamic evolution is governed
by Hamilton’s classical equation of motion from New-
ton’s second law. Each atom moves and acts simply as
a particle that is moving in a many-body force field of
other similar particles. The atomic and molecular inter-
actions describing the dynamics are thus given by classi-
cal many-body force-field functions, and the interatomic
potential Π as an infinite sum over pair, triplet, etc., can
be expressed by the Born-Opennheimer expansion as:

Π = ∑
I

[
1
2! ∑

J �=l

V (2) (r IJ)+
1
3! ∑

K �=
∑
J �=I

V (3) (r IJ , rKI, rKJ)

+ · · ·+ 1
n! ∑

L�=
.. ∑

M �=
..∑

J �=l

V (n) (r IJ , · · · , r IL, · · · , rML, · · ·)
]

(31)
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V (2), V (3) . . . and V (n) are the interaction potentials of the
two-, three- and n-body interactions, respectively.

As an example, we consider a two-body and three-body
separable potential here. The energy can be expressed as,

Π = ∑
I

[
1
2 ∑

J �=l

V (2) (r IJ)+∑
K �=

∑
J �=I

V (3) (r IJ, r Ik, r Jk)

]
(32)

In this paper, an important procedure is to estimate the
strain energy density in the ECM If we sum over all
the atoms as in the classical molecular dynamics, we
can certainly get the energy density by evaluating Π

/
Ω.

However, this is very expensive. In the quasicontinuum
method [Tadmor et al. (1996)], for a homogeneously dis-
torted crystal, the continuum strain energy density is ob-
tained by equaling to the potential energy of the atomic
system for a representative cell divided by its volume,
which means that the calculation of equation (32) is lim-
ited to a single unit cell. This method will be used in
regions that are very far from the inhomogeneous region,
in this paper. In the MLPG method, it is natural to limit
the calculation of equation (32) to a local domain Ω s, ie.,

W =
1

Ωs
∑

I∈Ωs

[
1
2 ∑

J �=l

V (2) (r IJ)+ ∑
K �=

∑
J �=I

V (3) (r IJ, r Ik, r Jk)

]

− Πr

Ωs

=
Πs

Ωs
(33)

where Ωs is the volume of the local domain, and Πr is
the potential energy of the reference configuration. It is
noted that the atoms K and J are located in the local do-
main Ωs, and within the cutoff radius of the boundary
of the local domain Ωs. It is noted that both the inter-
atomic potential energy and the strain energy, involve
reference states. The former is referenced to infinitely
separated atoms, and the latter is referenced to the un-
strained configuration. Hence, the constant offset energy
Πr, representing the potential energy in the unstrained
state, which does not affect the dynamics is subtracted in
equation (33).

If the energy can be written in a form that is additively
decomposed, such that Π = ∑

I=1
ΠI , with ΠI denotes the

potential energy for each atom, another way to derive the
strain energy density is to assume that each atom can be
assigned a volume ∆ΩI in the undeformed configuration

(Ω = ∑
I=1

∆ΩI). Then, the strain energy density can be

derived as W = ΠI
/

∆ΩI . In our numerical examples, we
proceed in this way.

After obtaining the strain energy density (33) by the
Cauchy-Born rule, the second Piola-Kirchhoff stress S,
and the tangent stiffness moduli D, in the ECM can be
expressed, respectively, as

S=
∂W
∂E

=
2

Ωs

∂Πs

∂C

=
2

Ωs
∑

I∈Ωs

[
1
2 ∑

J �=l

∂V (2) (r IJ)
∂r IJ

∂r IJ

∂C

]

+
2

Ωs
∑

I∈Ωs

[
∑
K �=

∑
J �=I

∂V (3) (r IJ, r Ik, r Jk)
∂r IJ

∂r IJ

∂C

+
∂V (3) (r IJ, r Ik, r Jk)

∂r Ik

∂r Ik

∂C

+
∂V (3) (r IJ, r Ik, r Jk)

∂r Ik

∂r Jk

∂C

]
(34)

D = 4
∂2W

∂C∂C
=

4
Ωs

∂2Πs

∂C∂C
(35)

where

∂r IJ

∂F
= RIJ,

∂F
∂C

= F−1,
∂r IJ

∂C
= RIJF−1 (36)

The equations from the nonlinear local Petrov-Galerkin
formulation (27), can be solved by employing an incre-
mental algorithm. The total Lagrangean method (T. L.)
will be employed in this paper. Assuming that the equa-
tion (27) is at time t, then from time t to time t + ∆t, the
incremental constitutive relation in the ECM can be ex-
pressed as

∆S= D:∆E = D:
(
∇∆u+∇uT ·∇∆u

)
(37a)

or

∆SKL = DKLMN (∆uM,N +uP,M∆uP,N) (37b)

where ∆u is the discernment of the displacement, i.e.,

∆u = t+∆t u− t u (38)
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with tu denotes the displacement u at time t. The equa-
tion (27) at time t +∆t can be linearized as

∫
Ωs

∆(SKLxl,L)Vl,KdΩ+
∫

Ls

∆(SKLxl,L)nKVldΓ

+
∫

Γsu

∆(SKLxl,L)nKVldΓ−
∫

Ωs

ρ
(twl +∆wl

)
VldΩ

= Q (39)

where the density is defined as

ρ =
1

Ωs

mI

∑
I∈Ωs

or ρ =
mI

∆ΩI
(40)

and

Q =
∫

Γst

SKLxl,LnKVldΓ+
∫

Ωs

flVldΩ

+
∫

Γst

∆(SKLxl,L)nKVldΓ+
∫

Ωs

∆ flVldΩ

−
∫

Ωs

SKLxl,LVl,KdΩ−
∫

Ls

SKLxl,LnKVldΓ

−
∫

Γsu

SKLxl,LnKVldΓ (41)

If we adopt the MLPG5 method, equation (39) and (41)
can be rewritten as∫
Ls

∆(SKLxl,L)nKdΓ+
∫

Γsu

∆(SKLxl,L)nKdΓ

−
∫

Ωs

ρ
(twl +∆wl

)
dΩ

= Ql (42)

and

Ql =
∫

Γst

SKLxl,LnKdΓ+
∫

Ωs

fldΩ+
∫

Γst

∆(SKLxl,L)nKdΓ

+
∫

Ωs

∆ fldΩ−
∫

Ls

SKLxl,LnKdΓ−
∫

Γsu

SKLxl,LnKdΓ

(43)

By using the natural boundary on Γ t , SKLxl,LnK = T l ,
equation (43) can be written as

Ql =
∫

Γst

T ldΓ+
∫

Ωs

fldΩ+
∫

Γst

∆T ldΓ+
∫

Ωs

∆ fldΩ

−
∫

Ls

SKLxl,LnKdΓ−
∫

Γsu

SKLxl,LnKdΓ (44)

According to equation (37), equation (39) or (42) is a
linear equation in terms of ∆u. The increment of dis-
placement, ∆u, can be interpolated in the MLPG method
as

∆u =
N

∑
α=1

φα (X) ∆uα (45)

∆uα,α = 1, 2, . . .,N, in equation (45), are the nodal val-
ues. Again, it is noted that N is less than the amount of
atoms of the system, and the node is not necessarily the
atom. For convenience, we rewrite equation (45) as

∆uI =
N

∑
α=1

φα
IJ (X) ∆uαJ (46)

with φα
IJ = φαδIJ .

Substitution of equation (45) into equation (42), for all
nodes, leads to the following discretized system of linear
equations:

−
N

∑
β=1

[
Mαβ

t+∆t üβ
]
+

N

∑
β=1

[tKαβ∆uβ
]
= Qα (47)

where

[tKαβ
]

JI

=
∫

Ls

[
DKLMN

(
δJL + tuJ,L

)
nK
(
δPM + t uP,M

)
φβ

PI,N

+SKLnKφβ
JI,L

]
dΓ

+
∫

Γsu

[
DKLMN

(
δJL + tuJ,L

)
nK
(
δPM + tuP,M

)
φβ

PI,N

+ SKLnKφβ
JI,L

]
dΓ (48)

[
Mαβ

]
JI =

∫
Ωs

ρφβ
JIdΩ (49)

{Qα}J

=
∫

Γst

T JdΓ+
∫

Ωs

fJdΩ+
∫

Γst

∆T JdΓ+
∫

Ωs

∆ fJdΩ

−
∫

Ls

SKL
(
δJL + t uJ,L

)
nKdΓ

−
∫

Γsu

SKL
(
δJL + t uJ,L

)
nKdΓ (50)
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The integration in equation (48)-(50) can employ the
Gaussian quadrature. It is shown that no domain integra-
tion in involved in equation (48), which is an important
advantage of MLPG5.

The linearized equations (47) will be very effective for
static or implicit time integration schemes. However, if
an explicit time integration scheme is employed, we can
directly use equations (28), and do not need to linearize
them. In this paper, we will use the central difference
rule to integrate time, and not linearize equations (28).

In this case, equation (28) can be rewritten as

Mαβüβ = tα (51)

for node α or

MCd̈ = tC (52)

for the whole region B, with

tα

=
∫

Γst

(
SFT ) ·ndΓ−

∫
Ls

(
SFT ) ·ndΓ−

∫
Γsu

(
SFT ) ·ndΓ

=
∫

Γst

∂W
∂F

·ndΓ−
∫

Ls

∂W
∂F

·ndΓ−
∫

Γsu

∂W
∂F

·ndΓ (53)

Mαβ =
∫

Ωs

ρφβId Ω (54)

and

d = [u1,u2, · · · ,uα, · · · ,uN ]T

tC = [t1, t2, · · · , tα, · · · , tN ]T

Gaussian quadrature is employed to compute the integral
in equation (53) numerically. M αβ is the sub-matrix of
the global mass matrix M C in region B. Here, the body
force is not considered. Equation (54) is for the consis-
tent mass matrix. It is noted that we can also use the
lumped mass in equation (52) same as that in FEM. The
lumping procedure can be same as that in FEM. Then, we
will obtain a diagonal mass matrix. Actually, in MLPG
method, to lump the mass matrix is simpler and more
convenient than in FEM, we can just assign the mass on
the node instead of distributing it continuously within the
local domain, i.e.

ρ = mαδ(X−Xα) (55)

with mα =
∫

Ωs
ρdΩ. Then, we have the diagonal mass

matrix

Mαβ = mαδαβI (56)

This reduces to the correct description in the atomic limit,
where nodes coincide with atoms. It is noted that equa-
tion (56) can also be obtained by means of the row-sum
technique, because of the zero-order consistency, i.e.,

n
∑

β=1
φβ = 1.

4 Atomistic (MD) Simulation in the Inhomogeneous
Deformation Region

In the inhomogeneous-deformation region, we will em-
ploy the MLPG2 by letting the node to be the atom itself.
Assume that there are N1 atoms in this region (MD). The
displacement of atom I in this region is denoted as q I

(1 ≤ I ≤ N1). Now, the control equation will be

−mI q̈I + fI = 0 (57)

fI = −∂Π
∂xI

= − ∂Π
∂qI

(58)

The force fI is computed, as it would be in a stan-
dard atomistic calculation. In molecular dynamics, these
equations are approximated as finite-difference equations
with discrete time step ∆t and are solved by the standard
Gear’s fifth-order predictor-corrector or Verlet’s leapfrog
method. The evaluation of the interatomic potential en-
ergy, and forces, is performed by taking advantage of the
neighbor-list of atoms, so that the time for the computa-
tion scales with the number of atoms in region A, i.e. it is
of order-N1. The neighbor list is renewed every several
time steps.

Similar to that in section 3, we can also linearize equation
(57). Although we will not employ it in the numerical
examples, we still list the equations here. Equation (57)
can be rewritten as

−mI
t+∆t q̈I + t+∆t fI = 0 (59)

Then, equation (59) is written as

−mI
t+∆t q̈I + t+∆t fI

≈−mI
t+∆t q̈I + t fI + ∑

J=1

t
(

∂fI
∂qJ

)
∆qJ = 0 (60)
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The above equation can be rewritten as

−mI
t+∆t q̈I +

N

∑
J=1

[
tK IJ∆qJ

]
= ∆QI (61)

where the tangent stiffness matrix tK IJ is defined as

tK IJ =
∂fI

∂qJ
(62)

and

∆QI = −t fI (63)

Now, a unified formulation for the multiscale system can
be developed, based on the MLPG method , and the tan-
gent stiffness concept. The equation (47) and (61) can be
written as

M t+∆t ü + tK∆u = t+∆t Q (64)

This method should be very effective due to the fact
that adaptive remeshing, which is an important factor in
multiscale dynamics, is very convenient in the MLPG
method. This computational methodology provides a
unified method for simulation in MD and equivalent con-
tinuum mechanics regions.

5 Interfacial Conditions between Atomistic Simula-
tion (MD) Region and the Equivalent Continuum
Mechanics (ECM) Region

In the multiscale simulation, the atomistic method is em-
ployed where the displacement field varies on an atomic
scale, and the continuum approach is employed else-
where. For the seamless multiscale simulation, it is im-
portant to ensure that the elastic waves generated in the
atomistic region can propagate into the continuum re-
gion. The continuum region cannot support modes of
short wavelength, which is less than the spacing of the
nodes. One source of finite size effects is the short waves
which are reflected back unphysically from an artificial
interface or boundary, which may also produce uneven
heating across the interface. In order to minimize such
reflections, some interfacial conditions are proposed [Cai
et al. (2000), E and Huang (2001), Wagner and Liu
(2003)]. In this paper, alternate interfacial conditions
between atomistic and continuum regions are proposed.
Their effectiveness in ensuring the accurate passage of

information between atomistic and continuum regions is
discussed.

As mentioned before, the displacement ui of an atom in
region B [ECM] implies an average value of the atomic
displacement, it can not catch the thermal fluctuations.
To describe it more accurately, we assume that the “real”
displacement qi of the atom in the region B can be ex-
pressed as:

qi = ui +δui (65)

where δui denote the atomic thermal fluctuations, and it
is assumed that δui << ui in region B. Now, the total
potential energy of the system (A+B) [wherein Region A
is of MD] can be written as:

Π(q1, · · · ,qN1+N2) ≈ Π(ui;qI)+
N2

∑
i=1

∂Π
∂qi

∣∣∣∣
qi=ui

δui

= Π0 +
N2

∑
i=1

∂Π0

∂ui
δui = Π0 (uB;qA)+

∂Π0

∂uB
·δuB (66)

(I = 1, · · · ,N1 in A; i = 1, · · · ,N2 in B)

Here Π0 denotes the zeroth-order approximation of the
potential energy; qA and uB are the atomic displacement
vectors with dimensions 3N1 (for 3 dimensions) in region
A, and 3N2 in region B, respectively; δuB is atomic ther-
mal fluctuation vector with dimension 3N2. We can also
expand the potential energy to a higher order, which will
be at the expense of an additional computational cost.
However, in the region B, the deformation is homoge-
neous, and δui is very small compared to ui, so that equa-
tion (66) is accurate enough. Effectively, the MLPG al-
gorithm involves an average over the atomic degrees of
freedom that are missing from the nodes in region B. The
second term in right side of equation (66) accounts for the
missing degrees of atomic freedom.

In many of the existing multiscale modeling methods, the
thermal fluctuation is generally neglected, as in Rudd and
Broughton (1998), Shenoy (2003), Abraham (2000). In
this case, in region A, the Newton’s Second law can be
written in a matrix form as

MAq̈A = f0
A; f0

A = −∂Π0
/

∂qA (67)

where the atomic mass matrix M A is a diagonal matrix
of size 3N1 with the atomic masses on the diagonal, and
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the force vector f0
A is of dimension 3N1. Eq. (67) is valid

only for classical 0◦K. We denote the solution of eq. (67)
as “Solution Method 1”. The degrees of freedom (DOF)
N1 in A are in general greater than these in B, viz., N2

[i.e., N1 >> N2]. Thus, in Solution Method 1, which is
computationally inexpensive, has the potential drawback
that higher frequencies waves will reflect back from the
interface between A and B.

To improve the performance at higher frequencies and as-
sure that the energy in region A can pass through the in-
terface between A and B, the thermal fluctuation of atoms
in region B must be considered. Thus, we will use the
first-order approximation of the potential energy, i.e. Π
in eq. (66), to replace Π0 in eq. (67), which leads to:

MAq̈A = f0
A −KABδuB (68)

where

KAB = ∂2Π0
/

∂uB∂qA.

It is noted that the tangent stiffness matrix K AB is of order
3N1 × 3N2, and its entries are nonzero, only when the
atoms in region A are directly coupled to atoms in region
B. δuB can be obtained from the equation of motion in
region B, viz.,

MBδüB = f0
B −MBüB (69)

where the atomic mass matrix M B is a diagonal matrix
of size 3N2, and the force vector f0

B of dimension 3N2 is
approximated as

f0
B = −∂Π0

/
∂uB (70)

In equations (68) and (69), we note that f A in region
A is approximated as f A = −∂Π

/
∂qA ≈ −∂Π0

/
∂qA −

∂2Π0
/

∂uB∂qAδuB; that in region B is approximated as
fB = −∂Π

/
∂qB . By integrating eq. (69) twice, δuB can

be solved for, and substituting this solution into eq. (68),
we have

MAq̈A = f0
A (uB,qA)−KAB

∫ t

0
(t−τ)Y (τ)dτ−R(t)

(71)

where

Y (t) = M−1
B f0

B (uB,qA)− üB (t) (72)

R(t) = KAB [δuB (0)+ tδu̇B (0)] (73)

Y(t) simply represents δüB. R(t) represents the effects
on region A due to the initial thermal fluctuation, and the
velocity in region B and is usually treated as a vector of
random forces to describe the effects of statistical fluctu-
ation in region B at nonzero temperature. In the example
problems in section 7, it is assumed that the tempera-
ture is 0◦K, so that R(t) can be ignored. The solution of
eq. (71), which is originally proposed here, is denoted as
“Solution Method 2”. It is noted that only a few of the
entries in vector Y(t) are necessary, since the matrix K AB

is nonzero only for the atomic pairs in the cutoff of the in-
terface. That makes presently proposed Solution Method
2 is computationally inexpensive.

Now, we will give a brief discussion about the second
term on the right hand side of equation (71). Assuming
that the time step is ∆t, and all the quantities are obtained
at the ith time step, then at the (i+1)th time step, we have

Ji+1 =
∫ ti+1

0
(ti+1 −τ)Y (τ)dτ

= ti+1

∫ ti+1

0
Y (τ)dτ−

∫ ti+1

0
τY (τ)dτ

= ti+1

∫ ti

0
Y (τ)dτ+ ti+1

∫ ti+1

ti
Y (τ)dτ−

∫ ti

0
τY (τ)dτ

−
∫ ti+1

ti
τY (τ)dτ

= ti+1Ŷi + ti+1

∫ ti+1

ti
Y (τ)dτ− Ỹi −

∫ ti+1

ti
τY (τ)dτ

=
(
tiŶi − Ỹi

)
+∆tŶi + ti+1

∫ ti+1

ti
Y (τ)dτ−

∫ ti+1

ti
τY (τ)dτ

= Ji +∆tŶi + ti+1∆Ŷ−∆Ỹ = Ji + ti∆Ŷ−∆Ỹ

+
(
∆tŶi +∆Ŷ

)
= Ji + ti∆Ŷ−∆Ỹ +∆tŶi+1

with

Ŷi =
∫ ti

0
Y (τ)dτ

Ŷi+1 = Ŷi +∆Ŷ

ti+1 = ti +∆t

and

∆Ŷ =
∫ ti+1

ti
Y (τ)dτ =

∆t
2

[Y (ti)+Y (ti+1)]

∆Ỹ =
∫ ti+1

ti
τY (τ)dτ =

∆t
2

[tiY (ti)+ ti+1Y (ti+1)]
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From the above equations, it can be seen that they only
used the results at the ith and the (i+1)th time steps, to
calculate the second term on the right hand side of equa-
tion (71) [only the entries for the atomic pairs in the cut-
off of the interface are needed] at (i+1) time step. Hence,
a complete time history of the trajectory is not needed to
evaluate the second term on the right hand side of equa-
tion (71).

In equations (68) and (69), which are based on the po-
tential energy, we note that the force in the region A is
expanded to the first order of δuB, while the force in the
region B is only of the zeroth order. To increase the ac-
curacy of the results, we can also expand the force in the
region B to the first order, as

fB = f0
B +KBBδuB (74)

with the 3N2 ×3N2 tangent stiffness matrix

KBB = ∂2Π0
/

∂uB∂uB

Then, eq. (69) can be rewritten as

MBδüB = f0
B +KBBδuB −MBüB (75)

Similar to Adelman and Doll (1976), by means of
Laplace transforms, the intermediate-variable δuB can be
solved for, and substituting it back into eq. (68), we have

MAq̈A = f0
A (uB,qA)−

∫ t

0
ϑϑϑ (t −τ)Y (τ)dτ+R(t) (76)

where

ϑϑϑ (t) = L−1
{

KAB
[
s2I +M−1

B KBB
]−1
}

(77)

R(t) = ϑ̇ (t)ϑ̇ (t)ϑ̇ (t)δuB (0)+ϑ (t)ϑ (t)ϑ (t)δu̇B (0) (78)

The matrix ϑϑϑ (t) denotes the time-dependent memory
kernel. The Operator L−1 indicates the inverse Laplace
transform. Eq. (76) is similar to the Generalized
Langevin Equation (GLE) boundary condition derived in
Adelman and Doll (1976) for the single-scale problem,
and in Wagner and Liu (2003) for the multiscale problem
by using a “bridging scale” decomposition [i.e., the entire
system is treated as a coarse scale one, B, first; and then
the entire system is treated as a fine scale one, A, later
sequentially. In the present paper, the system is treated
as a combination of parts A and B simultaneously]. We
denote the solution of eq. (75) as “Solution Method 3”.

The second term on the right hand side of equations (71)
and (75), the time history integral, implies the dissipa-
tion of energy from region A into region B, which results
in non-reflecting boundary conditions, supporting short
wavelengths that cannot be represented by the interpola-
tions in region B.

It is noted that the computation of the of the matrix ϑϑϑ (t)
involves not only an inverse Laplace transform, but also
the inversion of an N2 ×N2 matrix, which appears to be
impractical, although only a few of the entries in this
inverted matrix are necessary, since the matrix K AB is
nonzero only for atomic pairs in the cutoff of the inter-
face. The necessary entries of the matrix ϑϑϑ (t) can be ap-
proximated as that in Adelman and Doll (1976), or com-
puted numerically as in Cai at al. (2000). However, the
computation of the matrix ϑϑϑ (t) is costly. Moreover, a
complete time history of the trajectory is required to eval-
uate the second term on the right hand side of equation
(76). In our numerical examples, we will not consider
Solution Method 3.

6 Multiple Time Steps for Time Integration

In this paper, a multiple time step method is employed
for the time integration in both region A and B. The sta-
bility of multiple time step method was studied in Be-
lytschko et al. (1979), Belytschko and Smolinski (1985),
Belytschko and Lu (1993). The standard method would
be to use the central difference rule. In region B, the
time step is taken to be ∆tB. In region A, the time step is
∆tA = ∆tB

/
k, where k is a positive integer and determined

by the spacing of the nodes. Hence, the MD simulation
in region A is advanced by k steps of size ∆t A, when the
ECM simulation in region B is advanced for a step of size
∆tB.

The scheme for time integration in region A from time
step nk + i to nk + i+1 is as follows:

dnk+i+1 = dnk+i +∆tAḋnk+i +
1
2

∆t2
Ad̈nk (79)

ḋnk+i+1 = ḋnk+i +∆tAd̈nk (80)

Then, the displacements unk+i+1
B , of atom in the cutoff

of the interface, in region B are interpolated by equation
(30), and then

qnk+i+1
A = qnk+i

A +∆tAq̇nk+i
A +

1
2

∆t2
Aq̈nk+i

A (81)
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q̈nk+i+1
A = M−1

A fR
A

(
unk+i+1

B ,qnk+i+1
A

)
(82)

q̇nk+i+1
A = q̇nk+i

A +
1
2

∆tA
(

q̈nk+i+1
A + q̈nk+i

A

)
(83)

where 0 ≤ i < k, fR
A

(
unk+i+1

B ,qnk+i+1
A

)
represents the en-

tire right hand side of equation (67) or (71) or (76). It
is noted that in equations (79) and (80), only the quanti-
ties in the cutoff of the interface are needed. For all the k
steps from step nk, the acceleration of the nodes in region
B is assumed to be constant.

Once q(n+1)k
A are obtained at (n+1)k time step, the node-

displacement in region B is advanced form time step nk
to (n+1)k. The scheme for time integration in region B
from time step nk to (n+1)k is as follows

d(n+1)k = dnk +∆tBḋnk +
1
2

∆t2
Bd̈nk (84)

d̈(n+1)k = M−1
C tC

(
d(n+1)k,q(n+1)k

A

)
(85)

ḋ(n+1)k = ḋnk +
1
2

∆tB
(

d̈nk + d̈(n+1)k
)

(86)

It is noted that equations (79) and (80) give the same
node-displacement at (n+1)k time step as equation (84).
Once these quantities at (n+1)k time step are determined,
they will be used in equations (79) and (80).

7 Numerical Examples

7.1 one-dimensional chains

As a demonstration of the effectiveness of the multiscale
simulation method and the interfacial conditions pro-
posed here, we consider the same example as in Rudd and
Broughton (1998), Cai, et al. (2000), and Wagner and
Liu (2003): one-dimensional chains of identical atoms
with nearest-neighbor interactions. The spring constants,
mass, and equilibrium distances are set equal to unity.
There are 151 atoms in region A, which is bracketed by
two semi-infinite chains (region B). The lumped mass
matrix is used. The time integration uses multiple time
steps: the equivalent continuum simulation in region B is
advanced by a time step ∆tB = 0.1, while the MD simu-
lation in region A is advanced by ∆t A = ∆tB

/
5. The dis-

tance between the nodes in region B is h=7.8. The radius

of the trial function domain is taken to be 3.2h, and the
radius of the test domain is 0.85h. The Solution Methods
denoted as 1 and 2 earlier, are used to simulate the time
evolution, after introducing initial displacements accord-
ing to the wave packet [Rudd and Broughton (1998), Cai,
et al. (2000)]:

u(X , t = 0) = cos(kX)exp
(−X2/2σ2) (87)

Here, X denotes the equilibrium position of atoms. The
center of region A is X = 0. A full MD simulation is
also performed, in which the entire system is treated in
an atomistic scale. As a measure of the effectiveness of
Solution Methods 1 and 2, the wave reflection at the in-
terface between region A and B is evaluated. The reflec-
tivity R is defined as the maximum difference between
the instantaneous energies stored in region A during the
simulation and the full MD run, divided by initial energy
in region A [Cai, et al. (2000)].

R

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
k

Solution Method 1

Solution Method 2

Figure 4 : Comparison of the phonon reflectivity R in
two solution methods.

Fig. 4 shows the variation of phonon reflectivity R versus
the wave number k with σ = 5. In both cases shown, R
approaches to zero in the long wave-length limit. As the
wave number increases, R increases greatly, and is over
0.8 at the boundary of Brillouin zone in Solution Method
1, while it is less than 0.1 in all the Brillouin zone in
Solution Method 2. Solution Method 1 obtains lower R
than that in Rudd and Broughton (1998), and Abraham
(2000), that means MLPG will be a better method for
a seamless multiscale simulation than the finite element
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Figure 5 : Comparison of the displacement profiles computed using the multiscale methods and the full MD, at
t=18.

method. However, Solution Method 1 is much less effec-
tive than the Solution Method 2. Although lower R can be
reached in the Solution Method 3 [Cai, et al. (2000)], due
to its high computational cost, Solution Method 3 should
not be an appropriate choice among the three solutions in
most problems.

Another example is the same problem as in Wagner and
Liu (2003). A short wave-length perturbation is multi-
plied to a Gaussian pulse. The resulting initial displace-
ment is

u(X , t = 0) =

[
exp
(−X2

/
σ2
)−uc

]
1−uc

[1+0.1cos(kX)]

(88)

Here, uc = exp
(−l2/σ2

)
, l = 50, σ = 20, k = 0.4π. All

the other parameters are same as in the first example. Fig.
5 shows the displacements obtained by Solution Methods
1 and 2, and full MD at t = 18. Because of the config-
urational symmetry about X = 0, only the right plane is
plotted. An internal reflection of the short wave-length
perturbation appears in Solution Method 1, which looks
like the mirror image of the short wave-length perturba-
tion in full MD with the mirror located on the interface of
region A and B (X = 75). In Solution Method 2, the short
wave-length waves almost pass out of region A at the
same time as the long wave-length Gaussian pulse prop-

agates into region B. In region B, both cases simulate the
long wave-length Gaussian wave very well. Compared
with the full MD solution, there is an apparent smooth-
ing of the wave profile as the Gaussian pulse propagates
in region B, due to the large node space.

To make sure that the mass-lumping procedure (55)-(56)
are correct, we also used the consistent mass matrix in
Solution Method 2 in this example. The results show that
both the lumped and consistent mass work very well. A
Comparison of the displacement profiles computed using
the consistent and lumped mass in Solution Method 2, at
t=18 is plotted in Fig. 6. The initial displacement profile
is also plotted in Fig. 6.

7.2 Two-dimensional grapheme sheet

This multiscale method can be generalized to multiaxial
problems. In this subsection, a planar problem is consid-
ered to demonstrate the method without loss of general-
ity. The formulations can be extended to more compli-
cated 3-D systems. The problem is of a graphene sheet
of one-atom thickness.

In this example, the Tersoff-Brenner potential [Tersoff
(1988), Brenner (1990)] is used for the energy associated
with the deformation of the atoms. It is given as a sum
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Figure 6 : Comparison of the displacement profiles computed using the consistent and lumped mass in Solution
Method 2, at t=18, and the initial displacement profile.

over bonds as

Π = ∑
I

∑
J(>I)

[
VR (rIJ)−BVA (rIJ)

]
(89)

which has repulsive and attractive terms, respectively,

VR (rIJ) =
fIJ (r)D(e)

(S−1)
e−

√
2Sβ(r−R(e)) (90)

VA (rIJ) =
fIJ (r)D(e)S

(S−1)
e−

√
2
S β(r−R(e)) (91)

with the functions of the bond angle

B =
1
2

(BIJ +BJI) (92)

BIJ =

[
1+ ∑

K( �=I,J)
G(θIJK) fIK (rIK)

]−δ

(93)

G(θ) = a0

{
1+

c2
0

d2
0

− c2
0

d2
0 +(1+cosθ)2

}
(94)

and the cut-off function which limits the rang of the in-
teractions

fIJ (r) =




1, r < R(1)

1
2 + 1

2 cos

[
π(r−R(1))
(R(2)−R(1))

]
, R(1) < r < R(2)

0, r > R(2)

(95)

where the constants for carbon are

R(e) = 1.39Å, D(e) = 6.0 eV, S = 1.22,

β = 2.1Å
−1

, δ = 0.5,R(1) = 1.7Å, R(2) = 2.0Å,

a0 = 2.0813×10−4, c0 = 330, d0 = 3.5

and the mass of the carbon atom is mI = 12.01115×
1.65979×10−27 kg, and 1 ev = 1.602×10−19 J.

As discussed in section 3, in this method, the energy
will be written in a form that is additively decomposed.
Hence, equation (89) will be rewritten as sum over
atomic site I,

Π = ∑
I=1

ΠI (96)

where each contribution ΠI is written as

ΠI =
1
2 ∑

J( �=I)
[VR (rIJ)−BIJVA (rIJ)] (97)
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Then, the stress in equation (53) can be written as

∂W
∂F

=
1

∆ΩI

∂ΠI

∂F

=
1

2∆ΩI
∑

J( �=I)

[
V ′

R
∂rIJ

∂r IJ
−VA

∂BIJ

∂r IJ
−BIJV

′
A

∂rIJ

∂r IJ

]
⊗ ∂r IJ

∂F

+
1

2∆ΩI
∑

J( �=I)

[
−VA

∂BIJ

∂r IK
⊗ ∂r IK

∂F

]
(98)

and the force on the atom I can be obtained as

fI = −∂Π
∂xI

= − ∂Π
∂qI

=
1
2 ∑

J( �=I)

[
−V ′

R
∂rIJ

∂r IJ
+VA

∂BIJ

∂r IJ
+BIJV

′
A

∂rIJ

∂r IJ

]

+
1
2 ∑

J( �=I)
∑

K( �=I,J)

[
−VA (rJK)

∂BJK

∂r JI

]
(99)

The example is that of a 2D graphene sheet of one-atom
thickness, with 452.2764 Å length, 68.1819 Å width,
which has 11,552 atoms. The thickness of the sheet is
taken to be 3.4 Å, which is the standard layer separation
thickness for graphite. At the equilibrium sate, which
is taken to be the reference frame, the nearest neighbor
bond length is b=1.4507 Å. The sheet is fixed at left and
right edges. Periodic boundary conditions in the direc-
tion parallel to the surface are imposed, thus the effects
of the upper and lower surface are neglected. Initial dis-
placements are introduced, according to the plane wave
packet

u1 (X1,X2, t = 0)

=

[
exp
(−X2

1

/
σ2
)−uc

]
1−uc

[
1+0.1cos

(
kX1

a

)]
u2 (X1,X2, t = 0) = 0 (100)

where uc = exp
(−l2/σ2

)
, l = 40a, σ = 15a, a =

√
3b
/

2,
k = 0.5π. Here, X1 and X2 denote the positions of atoms
in the reference frame, and u1 and u2 denote the displace-
ment in the X1 and X2 direction, respectively. The cen-
ter line of the sheet is X1 = 0. Because of the config-
urational symmetry about X1 = 0, only the right plane
is considered in this numerical example. The compu-
tational domain is [0,226.1382]× [0,68.1819]. The re-
gion A is [0,74.1242]× [0,68.1819]; this region contains

1920 atoms. The region B containing 5792 atoms, is dis-
cretized into a set of nodes. Two sets of nodes are used
in this paper, the coarse one includes 19×10 nodes, and
the fine one includes 38×20 nodes. Fig. 6 is a part of
the distribution of the atoms and nodes in the reference
frame for the coarse one. The nodes in the region B are
distributed evenly, although it is unnecessary. However,
on the interface of region A and B, the nodes are taken
to be the atoms, as show in Fig. 7. Actually, these nodes
are only used for the interpolation, their motions is still
governed by atomic motion equation (57).

node

atom

Figure 7 : The distribution of the atoms and nodes in the
reference frame.

The computational setup described above is used to sim-
ulate the propagation of a plane wave packet (100). The
equivalent continuum simulation in region B is advanced
by a time step ∆tB = 5×10−15s, while the MD simulation
in region A is advanced by ∆tA = ∆tB

/
10 = 5×10−16s.

The radius of the trial function domain in Region B is
taken to be 4.2h, where h represents the distance between
the nodes in region B, and the radius of the test domain
is 0.85h. The Solution Method 2, with the lumped mass
matrix, is used to simulate the time evolution. A full MD
simulation is also performed to verify our numerical re-
sults.

Fig. 8 shows the displacement profiles of u1 for the atoms
along X2=34.8168 Å at different moments by using the
full MD simulation. The displacement u2 should be 0
in this case. Fig. 9 and Fig. 10 are the corresponding
displacement profiles obtained from the multiscale simu-
lation by using the coarse and fine nodes, respectively.

Comparing Fig. 8 - Fig. 10, we can find that both coarse
and fine cases can obtain good results. In Fig. 11, the
comparison of the displacement profiles at t=0.5 ps from
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Figure 8 : The displacement profiles of u1 along X2=34.8168 Å at different moments (full MD)
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Figure 11 : Comparison of the displacement profiles of u1 along X2=34.8168 Å, computed using the multiscale
methods and the full MD, at t=0.5 ps.

these 3 figures, are plotted. Compared with the full MD
solution, there is an apparent smoothing of the wave pro-
file as the wave propagates in region B, due to the large
node spacing. Certainly, the fine one can get better re-
sults than the coarse one. We also choose two atoms,
one in region A with coordinates (61.5608, 34.8186), an-
other in region B with coordinates (87.6876, 34.8186), to
compare their trajectories. The results are plotted in Fig.
12. Obviously, in region B, we can only obtain the aver-
age displacements of the atoms, the fluctuation cannot be
captured. Hence, the trajectory of the atom in region B is
smoothed, but it does not losse the essential characteris-
tics of the trajectory. Fig. 13 is the displacement profile
of the right half sheet at t=0.5 ps. The three coordinates
in this figure are X1, X2, and u1, respectively. This result
was obtained by using the coarse space resolution.
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Figure 12 : The trajectories of two atoms

Figure 13 : The displacement profiles of u1 at t=0.5 ps.

8 Conclusion

A multiscale simulation technique, based on a combina-
tion of MD and MLPG methods has been implemented
and tested. Multiple length scale, multiple time steps
technique are used in the numerical examples. Good
agreement of wave profile in MD and ECM parts is ob-
served in the simulation. Three alternate interfacial con-
ditions are derived, for the multiscale simulation, by con-
sidering the fluctuation of atoms in the continuum region.
Solution Method 2, proposed in this paper, is found to
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be optimal in both reducing the reflection of phonons
and in lowering computational cost, especially when the
atomistic region moves with time, which is the case that
intrigues us. The MLPG method is also found to be
very effective in seamless multiscale simulations. In this
method, a wave can be transported from the MD region
to the ECM region without losing the essential character-
istics of the wave profile.

This multiscale simulation method allows one to balance
the level of details necessary to provide reasonable accu-
racy in some regions of the model, with computational
cost. The applications of this methodology will be many
and varied. This method will play a key role in the simu-
lation and design methodology for nanodevices.
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Abstract:  

     A meshless method based on the local Petrov-Galerkin approach is proposed to solve 2-D and 
3-D axisymmetric boundary value problems in piezoelectric and magneto-electric-elastic solids 
with continuously varying material properties. Axial symmetry of geometry and boundary 
conditions reduces the original 3-D boundary value problem into a 2-D problem in the axial 
cross section. Stationary and transient dynamic problems are considered in this paper. The 
mechanical fields are described by the equations of motion with an inertial term. To eliminate 
the time-dependence in the governing partial differential equations the Laplace-transform 
technique is applied to the governing equations, which are satisfied in the Laplace-transformed 
domain in a weak-form on small subdomains. Nodal points are spread on the analyzed domain 
and each node is surrounded by a small circle for simplicity. The spatial variation of the 
displacements and the electric potential are approximated by the Moving Least-Squares (MLS) 
scheme. After performing the spatial integrations, one obtains a system of linear algebraic 
equations for unknown nodal values. The boundary conditions on the global boundary are 
satisfied by the collocation of the MLS-approximation expressions for the displacements and the 
electric potential at the boundary nodal points. The Stehfest’s inversion method is applied to 
obtain the final time-dependent solutions.  

Keyword: Meshless local Petrov-Galerkin method (MLPG), Moving least-squares interpolation, 
piezoelectric and piezomagnetic solids, Laplace-transform, Stehfest’s inversion 

 

1. Indroduction 

Modern smart structures made of piezoelectric and piezomagnetic materials offer certain 
potential performance advantages over conventional ones due to their capability of converting 
the energy from one type to other (among magnetic, electric, and mechanical) [Avellaneda and 
G. Harshe (1994); Berlingcourt et al. (1964); Landau et al. (1984); Nan (1994)]. Former 
activities were focused on modeling piezoelectric problems [Tiersten (1969); Ha et al. (1992); 
Gaudenzi and Bathe (1995); Lee (1995); Chen and Lin (1995); Batra and Liang (1997); Ding 
and Liang (1999); Liew et al. (2002]. Later, there are also some efforts to model magneto-
electric-elastic fields [Alshits et al. (1992); Chung and Ting (1995); Pan (2001); Liu et al. 
(2001); Wang and Shen (2002)]. Recently, increasing interest is devoted to fracture mechanics of 
piezoelectric [Beom and Atluri (1996, 2002), Gruebner et al. (2003); Govorukha and Kamlah 
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(2004); Enderlein et al. (2005), Kuna (2006);  Pan (1999); Gross et al. (2005); Garcia-Sanchez et 
al. (2005, 2007a); Saez et al. (2006); Sheng and Sze (2006)] and magneto-electric-elastic 
materials [Beom and Atluri (2003), Gao et al. (2003); Song and Sih (2003); Zhou et al. (2004); 
Hu et al. (2006); Wang et al. (2006); Tian and Gabbert (2005); Tian and Rajapakse, (2005); 
Garcia-Sanchez et al. (2007b); Wang and Mai (2007)]. Applications are mostly made under a 
static deformation assumption. Dynamic fracture analyses are occurring in literature very 
seldom. Also 3-D initial-boundary value analyses are occurring rarely. For homogeneous 
piezoelectric materials the axisymmetric free and forced vibrations of piezoceramic hollow 
spheres have been studied in [Loza and Shulga (1984, 1990)]. Analytical solution for stationary 
and transient dynamic load of a nonhomogeneous spherically isotropic piezoelectric hollow 
sphere is given by Chen et al. (2002) and Ding et al. (2003), respectively. The laminate model 
with radial dependence of physical fields is transformed to 1D problem. A piezoelectric solid 
under coupled thermal, mechanical and electrical loads have been studied [Tzou and Ye (1994); 
Gornandt and Gabbert (2002); Shang et al. (1996); Kuna (2006)]. Three-dimensional (3-D) 
penny-shaped crack problem in magnetoelectroelastic solids under a static load has been 
analyzed by Zhao et al. (2006). Recently, Feng et al. (2007) have investigated the transient 
response of a penny-shaped crack embedded in a magnetoelectroelastic layer of a finite 
thickness. Coupling of magneto-electro-thermo-elastic fields is investigated in works (Niraula 
and Wang, 2006; Zhu and T. Qin, 2007).  
   While the piezoelectric and piezomagnetic effects are due to electro-elastic and magneto-
elastic interaction, respectively, the magnetoelectric effect is the induction of the electrical 
polarization by magnetic field and the induction of magnetization by electric field via electro-
magneto-elastic interactions. Magnetoelectric coupling plays an important role in the dynamic 
behaviour of certain materials, especially compounds which possess simultaneously ferroelectric 
and ferromagnetic phases [Eringen and Maugin, (1990)]. The electric and magnetic symmetry 
groups for certain crystals permit the piezoelectric and piezomagnetic as well as magnetoelectric 
effects. In centrosymmetric crystals neither of these effects exists. However, remarkably large 
magnetoelectric effects are observed for composites than for either composite constituent [Nan, 
(1994); Feng and Su, (2006)]. If the volume fraction of constituents is varying in a predominant 
direction we are talking about functionally graded materials (FGMs). Originally these materials 
have been introduced to benefit from the ideal performance of its constituents, e.g. high heat and 
corrosion resistance of ceramics on one side, and large mechanical strength and toughness of 
metals on the other side. A review on various aspects of FGMs can be found in the monograph 
of Suresh and Mortensen (1998). Later, the demand for piezoelectric materials with high 
strength, high toughness, low thermal expansion coefficient and low dielectric constant 
encourages the study of functionally graded piezoelectric materials [Zhu et al. (1995); Han et al. 
(2006)]. According the best of authors’ knowledge there is available only one paper [Feng and 
Su, (2006)] with applications to continuously nonhomogeneous magneto-electric materials.  
    The solution of general boundary value problems for continuously nonhomogeneous magneto-
electric-elastic solids requires advanced numerical methods due to the high mathematical 
complexity. Besides this complication, the magnetic, electric and mechanical fields are coupled 
with each other in the constitutive equations. In spite of the great success of the finite element 
method (FEM) and boundary element method (BEM) as effective numerical tools for the 
solution of boundary value problems in mainly elastic solids, there is still a growing interest in 
the development of new advanced numerical methods. In recent years, meshless formulations are 
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becoming popular due to their high adaptability and low costs to prepare input and output data in 
numerical analysis. The moving least squares (MLS) approximation is generally considered as 
one of many schemes to interpolate discrete data with a reasonable accuracy. The continuity of 
the MLS approximation is given by the minimum between the continuity of the basis functions 
and that of the weight function. So continuity can be tuned to a desired value. In conventional 
discretization methods it is a discontinuity of secondary fields (gradients of primary fields) on 
the interface of elements. For modeling of continuously nonhomogeneous solids the approach 
based on piecewise continuous elements can bring some inaccuracies. Therefore, modeling 
based on C1 continuity, like meshless methods, is expected to be more accurate than 
conventional discretization techniques. The meshless or generalized FEM methods are also very 
convenient for modeling of cracks. One can embed particular enrichment functions at the crack 
tip so the stress intensity factor can be predicted accurately [Fleming et al, (1997)].  
    A variety of meshless methods has been proposed so far with some of them applied only to 
piezoelectric problems [Ohs and Aluru, (2001); Liu et al., (2002)]. They can be derived from a 
weak-form formulation either on the global domain or on a set of local subdomains. In the global 
formulation, background cells are required for the integration of the weak-form. In methods 
based on local weak-form formulation, no background cells are required and therefore they are 
often referred to as truly meshless methods. The meshless local Petrov-Galerkin (MLPG) 
method is a fundamental base for the derivation of many meshless formulations, since trial and 
test functions can be chosen from different functional spaces [Zhu et al. (1998); Atluri and 
Zhu(1998), Atluri et al. (2000); Atluri (2004); Sladek et al., (2000, 2001, 2003a,b); Sellountos 
and Polyzos (2003); Sellountos et al., (2005)]. Recently, the MLPG method with a Heaviside 
step function as the test functions [Atluri et al. (2003); Sladek et al., (2004, 2006a)] has been 
applied to solve two-dimensional (2-D) homogeneous and continuously nonhomogeneous 
piezoelectric solids [Sladek et al., (2006b, 2007a,b)]. In the present paper, the MLPG method is 
applied to 2-D continuously nonhomogeneous piezoelectric and magneto-electric-elastic solids. 
The coupled governing partial differential equations are satisfied in a weak form on small 
fictitious subdomains. Nodal points are introduced and spread on the analyzed domain and each 
node is surrounded by a small circle for simplicity, but without loss of shape generality. For a 
simple shape of subdomains like circles applied in this paper, numerical integrations over them 
can be easily carried out. The integral equations have a very simple nonsingular form. The 
spatial variations of the displacements and the electric potential are approximated by the moving 
least-squares scheme [Belytschko et al., (1996); Atluri, (2004)]. After performing the spatial 
integrations, a system of linear algebraic equations for the unknown nodal values is obtained. 
 

2.  Local integral equations for 2-D problems 

Basic equations of phenomenological theory of nonconducting elastic materials consist of the 
governing equations (Maxwell’s equations, the balance of momentum) and the constitutive 
relationships. An electro-elastic problem can be considered as a special case of a general 
magneto-electric-elastic problem. Therefore, further formulation is given for a general magneto-
electric-elastic problem. The governing equations completed by the boundary and initial 
conditions should be solved for unknown primary field variables such as the elastic displacement 
vector field ( , )iu τx , the electric potential ( , )ψ τx  (or its gradient called the electric vector field 

( , )iE τx ), and the magnetic potential ( , )µ τx  (or its gradient called the magnetic intensity field 
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( , )iH τx ). The constitutive equations co-relate the primary fields { , , }i i iu E H  with the secondary 
fields { , , }ij i iD Bσ which are the stress tensor field, the electric displacement vector field, and the 
magnetic induction vector field, respectively. The governing equations give not only the 
relationships between conjugated fields in each of the pairs ( , )ij ijσ ε , ( , )i iD E , ( , )i iB H , but 
describe also the electro-magneto-elastic interactions in the phenomenological theory of 
continuous solids.  
Taking into account the typical material coefficients, it can be found that characteristic 
frequencies for elastic and electromagnetic processes are 410 Hzelf =  and 710 Hzelmf = , 
respectively. Thus, if we consider such bodies under transient loadings with temporal changes 
corresponding to elf , the changes of the electromagnetic fields can be assumed to be immediate, 
or in other words the electromagnetic fields can be considered like quasi-static [Parton and 
Kudryavtsev, (1988)]. Then, the Maxwell equations are reduced to two scalar equations  

   , ( , ) 0j jD τ =x ,                                                                                                                            (1) 

   , ( , ) 0j jB τ =x ,                                                                                                                            (2) 

The rest vector Maxwell’s equations in quasi-static approximation, 0∇× =E  and 0∇× =H , are 
satisfied identically by appropriate representation of the fields ( , )τE x and ( , )τH x  as gradients 
of scalar electric and magnetic potentials ( , )ψ τx and ( , )µ τx , respectively,  

    ,( , ) ( , )j jE τ ψ τ= −x x ,                                                                                                               (3) 

   ,( , ) ( , )j jH τ µ τ= −x x .                                                                                                                (4) 

To complete the set of governing equations, eqs. (1) and (2) need to be supplied by the equation 
of motion in elastic continuum 

   , ( , ) ( , ) ( , )ij j i iX uσ τ τ ρ τ+ =x x x ,                                                                                               (5) 

where iu , ρ  and iX  denote the acceleration of displacements, the mass density, and  the body 
force vector, respectively. A comma after a quantity represents the partial derivatives of the 
quantity and a dot is used for the time derivative.  
Finally, we extend the constitutive equations involving the general electro-magneto-elastic 
interaction [Nan, (1994)] to media with spatially dependent material coefficients for 
continuously non-homogeneous media 

  ( , ) ( ) ( , ) ( ) ( , ) ( ) ( , )ij ijkl kl kij k kij kc e E d Hσ τ ε τ τ τ= − −x x x x x x x ,                                                       (6) 

  ( , ) ( ) ( , ) ( ) ( , ) ( ) ( , )j jkl kl jk k jk kD e h E Hτ ε τ τ α τ= + +x x x x x x x ,                                                       (7) 

  ( , ) ( ) ( , ) ( ) ( , ) ( ) ( , )j jkl kl kj k jk kB d E Hτ ε τ α τ γ τ= + +x x x x x x x ,                                                       (8) 

with the strain tensor ijε  being related to the displacements iu  by 
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  ( ), ,
1
2ij i j j iu uε = + .                                                                                                                     (9) 

The functional coefficients ( )ijklc x , ( )jkh x , and ( )jkγ x  are the elastic coefficients, dielectric 
permittivities, and magnetic permeabilities, respectively; ( )kije x , ( )kijd x , and ( )jkα x are the 
piezoelectric, piezomagnetic, and magnetoelectric coefficients, respectively. Owing to transient 
loadings, inertial effects and coupling, the elastic fields as well as electromagnetic fields are time 
dependent, though the fields  iE  and iH  are treated in quasi-static approximation.  
In case of some crystal symmetries, one can formulate also the plane-deformation problems 
[Parton and Kudryavtsev, (1988)]. For instance, in the crystals of hexagonal symmetry with 3x  
being the 6-order symmetry axis and assuming 2 0u =  as well as the independence on 2x , i.e. 

,2( ) 0= , we have  22 23 12 2 2 0E Hε ε ε= = = = = . Then, the constitutive equations (6) - (8) are 
reduced to the following form 

   
11 11 13 11 31 31

1 1
33 13 33 33 33 33

3 3
13 44 13 15 15

0 0 0
0 0 0

0 0 2 0 0

c c e d
E H

c c e d
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σ ε

         
            = − − =                                 
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2
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ε
ε
ε

 
    = − −          

C x L x K x ,                                                                         (10) 
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Recall that 22σ  does not influence the governing equations, although it is not vanishing in 
general, since 22 12 12 13 33 13 3c c e Eσ ε ε= + − . 
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The following essential and natural boundary conditions are assumed for the mechanical field 

   ( , ) ( , )i iu uτ τ=x x ,                 on     uΓ , 
   ( , ) ( , )i ij j it n tτ σ τ= =x x ,      on     tΓ ,   u tΓ = Γ ∪ Γ . 

 For the electrical field, we assume 

    ( , ) ( , )ψ τ ψ τ=x x ,          on     pΓ , 

    ( ) ( , ) ( , ) ( , )i in D Q Qτ τ τ≡ =x x x x ,      on     qΓ ,   p qΓ = Γ ∪ Γ  

and for the magnetic field 

   ( , ) ( , )µ τ µ τ=x x ,           on     aΓ , 

   ( ) ( , ) ( , ) ( , )i in B S Sτ τ τ≡ =x x x x  ,        on     bΓ ,   a bΓ = Γ ∪ Γ  

where uΓ  is the part of the global boundary Γ  with prescribed displacements, while on tΓ , pΓ ,  

qΓ , aΓ , and bΓ  the traction vector, the electric potential, the normal component of the electric 
displacement vector, the magnetic potential and the magnetic flux are prescribed, respectively. 
Recall that ( , )Q τx can be considered approximately as the surface density of free charge, 
provided that the permittivity of the solid is much greater than that of the surrounding medium 
(vacuum). 

The initial conditions for the mechanical displacements are assumed as 
   

0
( , ) ( ,0 )i iu uττ

=
=x x    and     

0
( , ) ( ,0 )i iu uττ

=
=x x      in   Ω . 

The Laplace transform technique is applied to eliminate the time variable in the differential 
equation. Applying to the governing equations (5) one obtains  

   2
, ( , ) ( ) ( , ) ( , )ij j i ip p u p F pσ ρ− = −x x x x ,                                                                                  (13) 

where  p is the Laplace-transform parameter and 

    ( , ) ( , ) ( ,0 ) ( ,0 )i i i iF p X p pu u= + +x x x x ,     

is the re-defined body force in the Laplace-transformed domain with the initial boundary 
conditions for the displacements ( ,0)iu x and velocities ( ,0)iu x . Recall that the subscripts take 
now values {1, 3}i ∈ . 
Instead of writing the global weak-form for the above governing equations, the MLPG method 
constructs a weak-form over the local fictitious subdomains such as sΩ , which is a small region 
constructed for each node inside the global domain [Atluri, (2004)]. The local subdomains 
overlap each other, and cover the whole global domain Ω . The local subdomains could be of 
any geometrical shape and size. In the present paper, the local subdomains are taken to be of a 
circular shape for simplicity. The local weak-form of the governing equation (13) can be written 
as                       

2 *
, ( , ) ( ) ( , ) ( , ) ( ) 0

s

ij j i i ikp p u p F p u dσ ρ
Ω

 − + Ω = ∫ x x x x x ,                                                      (14) 
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where * ( )iku x is a test function.  
Applying the Gauss divergence theorem to eq. (14) one obtains 
 
  * * 2 *

,( , ) ( ) ( ) ( , ) ( ) ( , ) ( ) ( , ) ( ) 0
s s s

ij j ik ij ik j i i ikp n u d p u d F p p u p u dσ σ ρ
∂Ω Ω Ω

 Γ − Ω + − Ω = ∫ ∫ ∫x x x x x x x x x ,                                          

                                                                                                                                                     (15) 

where s∂Ω  is the boundary of the local subdomain which consists of three parts 

s s st suL∂Ω = ∪ Γ ∪ Γ  [Atluri, (2004)]. Here, sL  is the local boundary that is totally inside the 
global domain, stΓ  is the part of the local boundary which coincides with the global traction 
boundary, i.e., st s tΓ = ∂Ω ∩ Γ , and similarly suΓ  is the part of the local boundary that coincides 
with the global displacement boundary, i.e., su s uΓ = ∂Ω ∩ Γ . 

By choosing a Heaviside step function as the test function * ( )iku x  in each subdomain as  

  * at
( )

0 at
ik s

ik
s

u
δ ∈Ω

=  ∉Ω

x
x

x
, 

the local weak-form (15) is converted into the following local boundary-domain integral 
equations  

  2( , ) ( ) ( , ) ( , ) ( , )
s su s st s

i i i i
L

t p d p u p d t p d F p dρ
+Γ Ω Γ Ω

Γ − Ω = − Γ − Ω∫ ∫ ∫ ∫x x x x x .                                 (16)  

Equation (16) is recognized as the overall force equilibrium conditions on the subdomain sΩ . 
Note that the local integral equation (16) is valid for both the homogeneous and 
nonhomogeneous solids. Nonhomogeneous material properties are included in eq. (16) through 
the elastic, piezoelectric and piezomagnetic coefficients in the traction components. 
Similarly, the local weak-form of the governing equation (2) can be written as                       

   *
, ( , ) ( ) 0

s

j jD p v d
Ω

Ω =∫ x x ,                                                                                                     (17) 

where *( )v x  is a test function.  
Applying the Gauss divergence theorem to the local weak-form (17) and choosing the Heaviside 
step function as the test function *( )v x  one can obtain   

   ( , ) ( , )
s sp sqL

Q p d Q p d
+Γ Γ

Γ = − Γ∫ ∫x x ,                                                                                            (18) 

where 

  , , ,( , ) ( , ) ( ) ( , ) ( , ) ( , )j j jkl k l jk k jk k jQ p D p n e u p h p p nψ α µ = = − − x x x x x x . 

The local integral equation corresponding to the third governing equation (3) has the form 

   ( , ) ( , )
s sa sbL

S p d S p d
+Γ Γ

Γ = − Γ∫ ∫x x ,                                                                                             (19) 
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where magnetic flux is given by 

  , , ,( , ) ( , ) ( ) ( , ) ( , ) ( , )j j jkl k l kj k jk k jS p B p n d u p p p nα ψ γ µ = = − − x x x x x x . 
 
In the MLPG method the test and the trial functions are not necessarily from the same functional 
spaces. For internal nodes, the test function is chosen as a unit step function with its support on 
the local subdomain. The trial functions, on the other hand, are chosen to be the MLS 
approximations by using a number of nodes spreading over the domain of influence. According 
to the MLS [Belytschko et al., (1996)] method, the approximation of the displacement can be 
given as 

   
1

( ) ( ) ( ) ( ) ( )
m

h T
i i

i
p a

=

= =∑u x x x p x a x , 

where { }1 2( ) ( ), ( ),. . . ( )T
mp p p=p x x x x  is a vector of complete basis functions of order m and 

{ }1 2( ) ( ), ( ),. . . ( )ma a a=a x x x x  is a vector of unknown parameters that depend on x. For example, in 
2-D problems  

  { }1 2( ) 1, ,T x x=p x  for m=3  
and 

  { }2 2
1 2 1 1 2 2( ) 1, , , , ,T x x x x x x=p x   for m=6 

are linear and quadratic basis functions, respectively. The basis functions are not required to be 
polynomials. It is convenient to introduce 1/ 2r−  singularity for secondary fields at the crack tip 
vicinity for modelling of fracture problems [Fleming et al., (1997)]. Then, the basis functions can 
be considered in the following form 

  { }1 2( ) 1, , , cos( / 2), sin( / 2), sin( / 2)sin , cos( / 2)sinT x x r r r rθ θ θ θ θ θ=p x  for m=7 

where r and θ  are polar coordinates with the crack tip as the origin. 
The approximated functions for the Laplace transforms of the mechanical displacements, the 
electric and magnetic potentials can be written as [Atluri, (2004)] 

 
1

ˆ ˆ( , ) ( ) ( ) ( )
n

h T a a

a
p pφ

=

= ⋅ = ∑u xΦ x u x u ,    

  
1

ˆ( , ) ( ) ( )
n

h a a

a
p pψ φ ψ

=

= ∑x x ,                                                                                                                                                                                           

  
1

ˆ( , ) ( ) ( )
n

h a a

a
p pµ φ µ

=

= ∑x x ,                                                                                                       (20) 

where the nodal values ( )1 3ˆ ˆ ˆ( ) ( ), ( )
Ta a ap u p u p=u  , ˆ ( )a pψ  and ˆ ( )a pµ  are fictitious parameters 

for the Laplace transforms of the displacements, the electric and magnetic potentials, 
respectively, and ( )aφ x  is the shape function associated with the node a. The number of nodes n 
used for the approximation is determined by the weight function ( )aw x . A 4th order spline-type 
weight function is applied in the present work 
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2 3 4

1 6 8 3 , 0( )

0,

a a a
a a

a a a a

a a

d d d d rw r r r
d r

      
− + − ≤ ≤      =       

 ≥

x ,                                                    (21) 

where a ad = −x x  and ar  is the size of the support domain. It is seen that the 1C − continuity 
is ensured over the entire domain, and therefore the continuity conditions of the tractions, the 
electric charge and the magnetic flux are satisfied. 
The Laplace transform of traction vectors ( , )it px  at a boundary point s∈∂Ωx  are approximated 
in terms of the same nodal values ˆ ( )a pu  as 

1 1 1

ˆˆ ˆ( , ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
n n n

h a a a a a a

a a a
p p p pψ µ

= = =

= + +∑ ∑ ∑t x N x C x B x u N x L x P x N x K x P x ,                  

                                                                                                                                                    (22)  
where the matrices ( ), ( )C x L x , and ( )K x are defined in eq. (10), the matrix  N(x) is related to the 
normal vector n(x) on s∂Ω  by 

  1 3

3 1

0
( )

0
n n

n n
 

=  
 

N x  

and finally, the matrices aB  and aP  are represented by the gradients of the shape functions as 

  
,1

,3

,3 ,1

0
( ) 0

a

a a

a a

φ
φ

φ φ

 
 =  
  

B x ,       ,1

,3

( )
a

a
a

φ
φ

 
=  

 
P x .                  

Similarly the Laplace-transform of the normal component of the electric displacement vector 
( , )Q px can be approximated by 

1 1 1
1 1 1

ˆˆ ˆ( , ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
n n n

h a a a a a a

a a a
Q p p p pψ µ

= = =

= − −∑ ∑ ∑x N x G x B x u N x H x P x N x A x P x ,   

                                                                                                                                                    (23) 
where the matrices ( ), ( )G x H x , and ( )A x  are defined in eq. (11) and 

   [ ]1 1 3( ) n n=N x .    

Eventually, the Laplace-transform of the magnetic flux ( , )S px  is approximated by 

1 1 1
1 1 1

ˆˆ ˆ( , ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
n n n

h a a a a a a

a a a
S p p p pψ µ

= = =

= − −∑ ∑ ∑x N x R x B x u N x A x P x N x M x P x ,    

                                                                                                                                                    (24)                  
with the matrices ( )R x and ( )M x  being defined in eq. (12). 
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Obeying the essential boundary conditions and making use of the approximation formula (20), 
one obtains the discretized form of these boundary conditions as 

     
1

ˆ( ) ( ) ( , )
n

a a

a
p pφ

=

=∑ ζ u u ζ     for   u∈Γζ ,  

     
1

ˆ( ) ( ) ( , )
n

a a

a
p pφ ψ ψ

=

=∑ ζ ζ   for   p∈Γζ ,        

     
1

ˆ( ) ( , )
n

a a

a
pφ µ µ

=

=∑ ζ ζ     for   a∈Γζ .                                                                                     (25)   

Furthermore, in view of the MLS-approximation (22) - (24) for the unknown quantities in the 
local boundary-domain integral equations (16), (18) and (19), we obtain their discretized forms 
as 

2

1 1

ˆˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
s st s s sq

n n
a a a a a

a aL L

d p d p d pρ φ
= =+Γ Ω +Γ

  
 Γ − Ω + Γ +       

∑ ∑∫ ∫ ∫N x C x B x I x u N x L x P xψ

 
1

ˆ( ) ( ) ( ) ( ) ( , ) ( , )
s sb st s

n
a a

a L

d p p d p d
= +Γ Γ Ω

 
+ Γ = − Γ − Ω   
∑ ∫ ∫ ∫N x K x P xμ t x F x  ,                               (26)  

  1 1
1 1

ˆˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
s sp s sp

n n
a a a a

a aL L

d p d p
= =+Γ +Γ

   
   Γ − Γ −
      

∑ ∑∫ ∫N x G x B x u N x H x P xψ          

  1
1

ˆ( ) ( ) ( ) ( ) ( , )
s sp sq

n
a a

a L

d p Q p d
= +Γ Γ

 
 − Γ = − Γ
  

∑ ∫ ∫N x A x P xμ x  ,                                                      (27) 

1 1
1 1

ˆˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
s sp s sp

n n
a a a a

a aL L

d p d p
= =+Γ +Γ

   
   Γ − Γ −
      

∑ ∑∫ ∫N x R x B x u N x A x P xψ          

  1
1

ˆ( ) ( ) ( ) ( ) ( , )
s sp sq

n
a a

a L

d p S p d
= +Γ Γ

 
 − Γ = − Γ
  

∑ ∫ ∫N x M x P xμ x  ,                                                      (28) 

which are considered on the sub-domains adjacent to the interior nodes as well as to the 
boundary nodes on stΓ , sqΓ  and sbΓ . In equation (26), I is a unit matrix defined by  

     
1 0
0 1

 
=  

 
I . 

Collecting the discretized local boundary-domain integral equations together with the discretized 
boundary conditions for the displacements, the electrical and magnetic potentials results in the 
complete system of linear algebraic equations for computation of the nodal unknowns, namely, 
the Laplace-transforms of the fictitious parameters ˆ ( )a pu , ˆ ( )a pψ  and ˆ ( )a pµ .  The time 
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dependent values of the transformed quantities can be obtained by an inverse Laplace-transform. 
In the present analysis, the Stehfest’s inversion algorithm [Stehfest, (1970)] is used. If ( )f p is 
the Laplace-transform of ( )f t , an approximate value af  of ( )f t  for a specific time  t is given 
by  

   
1

ln 2 ln 2( )
N

a i
i

f t v f i
t t=

 =   
∑   ,                                                                                                  (29) 

where  

      
[ ]

/ 2min( , / 2)
/ 2

( 1) / 2

(2 )!( 1)
( / 2 )! !( 1)!( )!(2 )!

Ni N
N i

i
k i

k kv
N k k k i k k i

+

= +

= −
− − − −∑          .                                         (30)  

In numerical analyses, we have considered N = 10 for double precision arithmetic. It means that 
for each time t we need to solve N boundary value problems for the corresponding Laplace-
transform parameters ln 2 /ip i t= , with 1, 2,...,i N= . If M denotes the number of the time 
instants in which we are interested to know ( )f t , the number of the Laplace- transform 
solutions ( )if p is then M N× . It should be noted that the present computational method can be 
easily reformulated into the real time formulation as it was shown recently for 3-D axisymmetric 
piezoelectric problems in functionally graded materials [Sladek at al., (2008)].  
 
3. Local integral equations for 3-D axisymmetric problems 
Let us consider a 3-D axisymmetric magneto-electro-elastic body generated by the rotation of 
the planar domain Ω  bounded by the boundary Γ  around the axis of symmetry as depicted in 
Fig.1. Let us consider solids with hexagonal symmetry and the z-axis being oriented in the 
poling direction. Moreover, we assume the body to be transversely isotropic, i.e. the additional 
symmetry is the rotational symmetry with respect to the z-axis. For axisymmetric problems it is 
convenient to use cylindrical coordinates ( , , )r zϕ≡x . Owing to the hexagonal symmetry, the 
tensors of material coefficients are the same as in the previous section and their cylindrical 
components can be identified with the Cartesian ones by equating the indices as 
( , , ) (1, 2,3)r zϕ =  in the axial plane 1 3( , ) ( , )x x r z= . Furthermore, the angular component of the 

displacements vanishes and all physical field quantities are independent on the angular 
coordinate ϕ because of the axial symmetry. Thus, in the cylindrical coordinates also with the 
representation of tensors being with respect to the cylindrical unit basis vectors, the nonzero 
strains are given as 

    ,rr r ruε = ,  /ru rϕϕε = ,   , ,( ) / 2rz r z z ru uε = +  ,   ,zz z zuε = , 

and the nonzero electrical and magnetic fields are ,a aE ψ= − , ,a aH µ= −  with { , }a r z∈ . 

Thus, selecting the considered planar domain Ω in the axial plane 1 3( , ) ( , )x x r z= , we can apply 
the constitutive equations valid for crystals exhibiting hexagonal to nonzero components of the 
fields { , , }ab a aE Hε  (Parton and Kudryavtsev, 1988). Then bearing in mind 22 11c c= , 23 13c c= , 
etc, we have  
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, 31 3111 12 13

31 3112 11 13

, 33 3313 13 33

, , 15 1544

0 00
/ 0 00

0 00
0 00 0 0

rr r r

r r r

z z z zzz

r z z rrz

u e dc c c
u r e dc c c E H
u e dc c c E H

u u e dc

ϕϕ

σ
σ
σ
σ

        
                    = − −                           +       

, 

   

,

15 11 11

,31 31 33 33 33

, ,

/0 0 0 0 0
0 0 0

r r

rr r r

z zz z z

r z z r

u
u re hD E H
ue e e hD E H

u u

α
α

 
            = + +                       + 

, 

   

,

15 11 11

,31 31 33 33 33

, ,

/0 0 0 0 0
0 0 0

r r

rr r r

z zz z z

r z z r

u
u rdB E H
ud d dB E H

u u

α γ
α γ

 
            = + +                       + 

.             (31) 

1=r

2

L

b

3=z

Γ

a

Ω

u =0z σrz=0

σrr=p

σrz=0

 
Fig. 1 A 3-D axisymmetric body 

In the cylindrical coordinate system, the governing equations (1), (2) and (5) take the form  

    , ,
1( , , ) ( , , ) ( , , ) ( , , ) ( ) ( , , ) ( , , )rr r rz z rr r rr z r z r z r z u r z X r z
r ϕϕσ τ σ τ σ τ σ τ ρ τ τ + + − − = −  x  ,                            

    , ,
1( , , ) ( , , ) ( , , ) ( ) ( , , ) ( , , )rz r zz z rz z zr z r z r z u r z X r z
r

σ τ σ τ σ τ ρ τ τ+ + − = −x   ,                               

     , ,
1( , , ) ( , , ) ( , , ) 0r r z z rD r z D r z D r z
r

τ τ τ+ + = ,                 
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     , ,
1( , , ) ( , , ) ( , , ) 0r r z z rB r z B r z B r z
r

τ τ τ+ + =  ,                                                                         (32) 

Note that 12 11c c≠ (and consequently 0rr ϕϕσ σ− ≠ ) even in the case of the axial symmetry. The 
opposite has been assumed implicitly in eqs. (3.28) and (3.29) of the book (Parton and 
Kudryavtsev, 1988). 

In the present analysis, all material parameters in the constitutive equations (31) are considered 
to be dependent on the (r, z)-coordinates. 
Applying the Laplace transform to the first two eqs. in (32), we get  

  2
, ,

1( , , ) ( , , ) ( , , ) ( , , ) ( ) ( , , ) ( , , )rr r rz z rr r rr z p r z p r z p r z p p u r z p F r z p
r ϕϕσ σ σ σ ρ + + − − = −  x ,                            

  2
, ,

1( , , ) ( , , ) ( , , ) ( ) ( , , ) ( , , )rz r zz z rz z zr z p r z p r z p p u r z p F r z p
r

σ σ σ ρ+ + − = −x  .                         (33) 

Recall that the third and fourth eqs. In (32) remain unchanged by the Laplace transformation, i.e. 

  , ,
1( , , ) ( , , ) ( , , ) 0r r z z rD r z p D r z p D r z p
r

+ + = , 

  , ,
1( , , ) ( , , ) ( , , ) 0r r z z rB r z p B r z p B r z p
r

+ + = .                                                                           (34) 

In numerical solution, we apply again the MLPG method to construct the weak form over local 
subdomains such as sΩ , which is a small region taken for each node inside the global domain 
(Atluri, 2004). The local subdomains overlap each other, and cover the whole global domain 
Ω . The local subdomains could be of any geometric shape and size. In the present paper, the 

local subdomains are taken to be of circular shape. The local weak forms of the governing 
equations (33) and (34) can be written as  

 ( ) ( )* * 2 * *
, ,

1 ( ) ( , , ) ( , , )
s s s s

rr r rz z rr r ru d u d p u r z p u d F r z p u d
r ϕϕσ σ σ σ ρ

Ω Ω Ω Ω

+ Ω + − Ω − Ω = − Ω∫ ∫ ∫ ∫x ,  

 ( ) * * 2 * *
, ,

1 ( , , ) ( ) ( , , ) ( , , )
s s s s

zr r zz z rz z zv d r z p v d p u r z p u d F r z p v d
r

σ σ σ ρ
Ω Ω Ω Ω

+ Ω + Ω − Ω = − Ω∫ ∫ ∫ ∫x , 

  ( ) * *
, ,

1 ( , , ) 0
s s

r r z z rD D m d D r z p m d
rΩ Ω

+ Ω + Ω =∫ ∫ ,                                                                  

   ( ) * *
, ,

1 ( , , ) 0
s s

r r z z rB B d B r z p d
r

β β
Ω Ω

+ Ω + Ω =∫ ∫ ,                                                                      (35) 

where *( )u x , *( )v x , *( )m x  and *( )β x are test functions.   
Applying the Gauss divergence theorem to the first domain integrals of eqs. (35) and selecting 
Heaviside unit step functions as test functions *( )u x , *( )v x  , *( )m x and *( )β x  in each 
subdomain, one can recast equations  into the following forms 
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  ( ) 21( , , ) ( ) ( , , ) ( , , )
s s s s

rb b rr r rr z p n d d p u r z p d F r z p d
r ϕϕσ σ σ ρ

∂Ω Ω Ω Ω

Γ + − Ω − Ω = − Ω∫ ∫ ∫ ∫x , 

 21( , , ) ( , , ) ( ) ( , , ) ( , , )
s s s s

zb b rz z zr z p n d r z p d p u r z p d F r z p d
r

σ σ ρ
∂Ω Ω Ω Ω

Γ + Ω − Ω = − Ω∫ ∫ ∫ ∫x , 

 1( , , ) ( , , ) 0
s s

b b rD r z p n d D r z p d
r∂Ω Ω

Γ + Ω =∫ ∫ , 

 1( , , ) ( , , ) 0
s s

b b rB r z p n d B r z p d
r∂Ω Ω

Γ + Ω =∫ ∫ ,                                                                               (36) 

where the subscript b in eqs. (36) is considered as a summation index with ,b r z= . 
As in 2-D problems the displacement and the potential fields are approximated by the MLS 
approximation. Substituting the approximation formula (20) into the local integral equations (36) 
a system of linear algebraic equations for the unknown fictitious parameters { }ˆˆ ˆ ˆ, , ,a a a a

r zu u ψ µ is 
obtained as 

 12
11 , 44 ,

1

( )ˆ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
s

n
a a a a
r r r r z z

a

cu p c n n c n d
r

φ φ φ
= ∂Ω

  + + Γ +   
∑ ∫

xx x x x x x x x  

( ) 2
11 12 ,

1 1( ) ( ) ( ) ( ) ( ) ( )
s

a a a
rc c p d

r r
φ φ ρ φ

Ω

   + − − − Ω +     
∫ x x x x x x  

( )13 , 44 ,
1

ˆ ( ) ( ) ( ) ( ) ( ) ( ) ( )  
s

n
a a a
z r z z r

a
u p c n c n dφ φ

= ∂Ω

+ + Γ +∑ ∫ x x x x x x  

( )31 , 15 ,
1

ˆ ( ) ( ) ( ) ( ) ( ) ( ) ( )  
s

n
a a a

r z z r
a

p e n e n dψ φ φ
= ∂Ω

+ + Γ +∑ ∫ x x x x x x  

( )31 , 15 ,
1

ˆ ( ) ( ) ( ) ( ) ( ) ( ) ( )  ( , , )
s s

n
a a a

r z z r r
a

p d n d n d F r z p dµ φ φ
= ∂Ω Ω

+ + Γ = − Ω∑ ∫ ∫x x x x x x ,                           (37)   

 

244
33 , 44 , ,

1

( )ˆ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
s s

n
a a a a a
z z z r r r

a

cu p c n c n d p d
r

φ φ φ ρ φ
= ∂Ω Ω

    + Γ + − Ω +       
∑ ∫ ∫

xx x x x x x x x x  

 44
44 , 13 , ,

1

( )1ˆ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
s s

n
a a a a a
r r z z r z

a

cu p c n c n d d
r r

φ φ φ φ
= ∂Ω Ω

    + + + Γ + Ω +       
∑ ∫ ∫

xx x x x x x x x  
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  ( )15 , 33 , 15 ,
1

1ˆ ( ) ( ) ( ) ( ) ( ) ( ) ( )  ( ) ( )
s s

n
a a a a

r r z z r
a

p e n e n d e d
r

ψ φ φ φ
= ∂Ω Ω

  + + Γ + Ω + 
  

∑ ∫ ∫x x x x x x x x      

   ( )15 , 33 , 15 ,
1

1ˆ ( ) ( ) ( ) ( ) ( ) ( ) ( )  ( ) ( )
s s

n
a a a a

r r z z r
a

p d n d n d d d
r

µ φ φ φ
= ∂Ω Ω

  + + Γ + Ω = 
  

∑ ∫ ∫x x x x x x x x  

    ( , , )
s

zF r z p d
Ω

= − Ω∫ ,                                                                                                                (38) 

   

    15 , 31 , 15 ,
1

1 1ˆ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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∑ ∫ ∫x x x x x x x x ,            (40)  

Equations (37)-(40) are considered in the subdomains sΩ around each interior node sx  and at 
boundary nodes with prescribed natural boundary conditions ( tΓ , qΓ  and bΓ ). On the parts of 
the global boundary uΓ  with prescribed elastic displacements, pΓ  with prescribed electric 
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potentials and aΓ  with prescribed magnetic potential the collocation equations are applied like in 
2-D problem. 

 
4  Numerical examples 

4.1  Cantilever beam 

In this section, numerical results for the bending of a square piezoelectric panel are presented to 
illustrate the accuracy of the proposed method. The square panel with a size 1 1a a mm mm× = ×  
made of a PZT-4 material is subjected to a pure bending moment arising from a linearly varying 
stress at the right boundary (Fig. 1). The lower boundary of the panel is earthed and  vanishing 
electrical potential is assumed on this side of panel. The other boundaries have prescribed 
vanishing electrical charge. 
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Fig. 2 Bending of a square piezoelectric panel 

 
The material coefficients corresponding to PZT-4 material are following  

 10 2
11 13.9 10c Nm−= ⋅ ,    10 2

13 7.43 10c Nm−= ⋅  ,    10 2
33 11.3 10c Nm−= ⋅ ,   10 2

44 2.56 10c Nm−= ⋅ , 

  2
15 13.44e Cm−= ,    2

31 6.98e Cm−= − ,    2
33 13.84e Cm−= , 

  9 1
11 6.0 10 ( )h C Vm− −= ⋅ ,  9 1

33 5.47 10 ( )h C Vm− −= ⋅ . 

The mechanical displacement and the electrical potential fields on the finite square panel are 
approximated by using 121 (11x11) nodes equidistantly distributed. The local subdomains are 
considered to be circular with a radius 0.08locr mm= . First, the static boundary conditions are 
considered. The analytical solution of the problem is given by Parton et al. (1989). Numerical 
results for the displacement component 3u  and the electric potential along the line 3 / 2x a=  are 
presented in Figs. 3 and 4. One can observe an excellent agreement of the present results and the 
exact solution in the whole interval considered. To see the influence of the electrical field on the 



 17 

mechanical displacements the results for a pure elastic panel (without electro-elastic 
interaction 15 31 33 0e e e= = = ) are given in Fig. 3 too. For the considered boundary conditions, the 
mechanical displacement component 3u  is reduced in the piezoelectric panel compared to a pure 
elastic one. 

-6.00E-18

-5.00E-18

-4.00E-18

-3.00E-18

-2.00E-18

-1.00E-18

0.00E+00

0 0.2 0.4 0.6 0.8 1

x1/a

u3
 [m

]

elastic
piezoelastic
exact

 
Fig. 3 Variation of the mechanical displacement 3u  with normalized coordinate 1 /x a  

 
In the next example, we consider the same piezoelectric panel subject to a harmonic load with 
the angular frequencyω . Both the geometrical and the material parameters are the same as in the 
previous static case. For the numerical calculations we have used again 441 nodes with a regular 
distribution. The mass density for PZT4 piezoelectric material is 37500 /kg mρ = . Numerical 
results are compared with those obtained by the FEM-ANSYS computer code. The FEM results 
have been obtained by using 3600 quadratic eight-noded elements. One can observe quite good 
agreement of the normalized amplitudes of the beam deflection at the considered angular 
frequency interval in Fig. 5. The amplitudes are normalized by the static value deflection vlue 

18
3 3.96 10statu m−= ⋅ . The first eigen-value frequency is 6 13.8 10 s−⋅ . 
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Fig. 4 Variation of the electrical potential with normalized coordinate 3 /x a   
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Fig. 5 Influence of the angular frequency on the beam deflection 

 
In the next example the PZT4 actuator is bonded on the upper surface of the steel cantilever 
beam. The width of the beam and actuators are 40 mm. Other sizes are given in Fig.6. When an 
external voltage 200V is applied across the thickness of the actuator, the induced strain generates 
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moments that bend the beam. The variation of the beam deflection with 1x  coordinate is 
presented in Fig. 7. A quite good agreement of FEM and MLPG results is observed there. This 
example is an illustration that the present MLPG method can be successfully applied to problems 
in piecewise homogeneous structures too. 
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Fig. 6 A cantilever beam with piezoelectric actuator 
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Fig. 7 Variation of the beam deflection 3u  with normalized coordinate 1x  

4.2  Edge crack in a piezoelectric solid 
An edge crack in a finite strip is analyzed in the next example. The sample geometry is given in 
Fig. 8 with following values: 0.5a = , / 0.4a w =  and / 1.2h w = . Due to the symmetry with 
respect to 1x only a half of the specimen is modeled. We have used 930 nodes equidistantly 
distributed for the MLS approximation of physical fields. On the top of the strip a uniform 
impact tension 0σ and electrical displacement 0D (Heaviside time variation) are applied, 
respectively. Impermeable electrical boundary conditions on crack surfaces are considered here. 
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Functionally graded material properties in 1x coordinate are considered. An exponential 
variation for the elastic, piezoelectric and dielectric tensors is used 

   0 1( ) exp( )ijkl ijklc c xγ=x , 

    0 1( ) exp( )ijk ijke e xγ=x  

    0 1( ) exp( )ij ijh h xγ=x ,                                                                                                           (41) 

where 0ijklc , 0ijke and 0ijh  correspond to parameters used in the previous example. 

a
w

cij0

c exp( x )ij0 1γ

x1

x3

2h

 
 

Fig. 8 An edge crack in a finite strip with graded material properties in 1x  
 
For cracks in homogeneous and linear piezoelectric and piezomagnetic solids the asymptotic 
behaviour of the field quantities has been given by Wang and Mai (2003). In the crack tip 
vicinity, the displacements and potentials show the classical r  asymptotic behaviour. Hence, 
correspondingly, stresses, the electrical displacement and magnetic induction exhibit 
1/ r behaviour, where r is the radial polar coordinate with origin at the crack tip. Garcia-
Sanchez et al. (2007b) extended the approach used in piezoelectricity to magnetoelectroelasticity 
to obtain asymptotic expression of generalized intensity factors 

  

1

31Re( )
2

II

I

E

M

K u
K u
K r
K

π
ψ
µ

−

   
   
    =     
   

  

Β                                                                                                    (42) 

where the matrix B is determined by the material properties (Garcia-Sanchez et al., 2007b; 
Garcia-Sanchez and Saez, 2005) and 
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  330
lim 2 ( ,0)I r

K r rπ σ
→

= , 

  130
lim 2 ( ,0)II r

K r rπ σ
→

= , 

  30
lim 2 ( ,0)E r

K rD rπ
→

= , 

  30
lim 2 ( ,0)M r

K rB rπ
→

= , 

are the stress intensity factors (SIF) IK  and IIK , EK  is the electrical displacement intensity 
factor (EDIF), and MK  is the magnetic induction intensity factor (MIIF), respectively. 
The influence of the material gradation on the stress intensity factor and electrical displacement 
intensity factor is analyzed. The temporal variation of the SIF and the EDIF in the cracked strip 
under a pure mechanical load is presented in Fig. 9 and Fig. 10, respectively. The static stress 
intensity factor for the considered load and geometry is equal to 1/22.642Pa mstat

IK = . Numerical 
results for a homogeneous strip are compared with FEM ones, and a quite good agreement is 
observed. For a gradation of mechanical material properties with 1x coordinate and a uniform 
mass density, the wave propagation is growing with 1x . Therefore, the peak value of the SIF is 
reached in a shorter time instant in FGPM strip than in a homogeneous one. The maximum value 
of the SIF is only slightly reduced for the FGPM cracked strip. 

-0.2
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

0 5 10 15 20 25

(c330/ρ)1/2t/a

K
I/K

Ista
t

FEM
MLPG: homog.
            gama=2

 
Fig. 9 Influence of the material gradation on the stress intensity factor in a cracked strip under a 

pure mechanical impact load 0 ( 0)H tσ −  
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Fig. 10 Influence of the material gradation on the EDIF in the cracked strip under a pure 

mechanical impact load 0 ( 0)H tσ −  
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Fig. 11 Temporal variation of the EDIF in the cracked strip under a pure electrical displacement 

impact load 0 ( 0)D H t −  
Next, the cracked strip under a pure electrical displacement impact load is analyzed. Since static 
SIF and EDIF are uncoupled it has to be valid stat stat

IV IK K= . The temporal variation of the EDIF 
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is given in Fig. 11. The EDIF is significantly reduced for a cracked FGPM compared to a 
homogeneous strip. The oscillation of amplitudes for EDIF is again faster in an FGPM strip. 
Similar phenomena are observed for SIF in Fig. 12. 

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 5 10 15 20 25

(c330/ρ)1/2t/a

K
I/ Λ

K
IV

sta
t

Homog.: FEM

                MLPG

FGPM: gamma=2

 
Fig. 12 Temporal variation of the SIF in the cracked strip under a pure electrical displacement 

impact load 0 ( 0)D H t −  

4.3  Hollow piezoelectric sphere  

A hollow sphere with continuously nonhomogeneous spherically symmetric and radially 
dependent piezoelectric material coefficients exhibits transversally isotropic properties. The 
sphere is radially polarized and either the static or impact loads are considered as spherically 
symmetric too. The temperature field is assumed to be uniformly distributed. The inner 

0.4a m=  and outer radii 1b m=  are considered, respectively. The analytical solution is given by 
Chen et al. (2002) and Ding et al.(2003) and it is used as a benchmark to test the accuracy of the 
present method. The boundary conditions with prescribed pressures and vanishing electrical 
displacements on both surfaces correspond to pressured sphere embedded into nonconductive 
media (the open-circuit electric condition). A half of the hollow sphere can be created by the 
rotation of the cross section given in Fig. 13 around the z-axis. Note that the radial and axial 
directions are fixed as shown in Fig.13 according to the definition in the cylindrical coordinate 
system. The unit basis vectors of the spherical coordinate system { , , }r ϕ ω′e e e are related to those 
of the cylindrical coordinate system { , , }r zϕe e e as  

    cos sinr r zω ω′ = +e e e ,    sin cosr zω ω ω= − +e e e . 

Thus, the radial directions in two considered coordinate systems are not identical in general. 
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For the numerical calculations, 176 nodes with a regular distribution in the radial and azimuthal 
directions in the section with 0ϕ = are employed. An exponential variation of the elastic, 

piezoelectric and dielectric coefficients on the radial distance 2 2
1 3( )r x x′ = +  is assumed by 

    0( ) exp ( )ij ijc c r aγ ′= −x , 

    0( ) exp ( )ij ije e r aγ ′= −x  

    0( ) exp ( )ij ijh h r aγ ′= −x ,                                                                                                       (43) 

where the values on the inner radius r a′ = are taken under the given temperature as 
0 10 2
11 13.9 10c Nm−= ⋅ ,    0 10 2

13 7.43 10c Nm−= ⋅  ,    0 10 2
12 7.78 10c Nm−= ⋅ , 

 0 10 2
33 11.5 10c Nm−= ⋅ ,   0 10 2

44 2.56 10c Nm−= ⋅ ,    

  0 2
44 12.7e Cm−= ,    0 2

31 5.2e Cm−= − ,    0 2
33 15.1e Cm−= , 

  0 9 1
11 6.46 10 ( )h C Vm− −= ⋅ ,  0 9 1

33 5.62 10 ( )h C Vm− −= ⋅ , 3const 7500kg/mρ = = . 

1 11
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Fig. 13 Analyzed domain for a hollow sphere 

 
It should be noted that proposed computational method works for all continuously 
nonhomogeneous materials. In derivation of local integral equations no limitation is made with 
respect to spatial variation of material properties. The exponential variation in numerical 
example is selected only for comparative purposes since for such kind of nonhomogeneity 
numerical results are available. The mass density in this example is considered to be uniform, 



 25 

however, a general spatial variation can be considered. No restriction is put on the variation of 
mass density in proposed local integral equations. A static uniform pressure load 2

0 1 /p N m=  is 
considered on the inner radius r a′ = , in the first step. Variation of the radial 
displacements 1 1 3( , 0)ru u x x= = , radial and hoop stresses [ 11 1 3( , 0)rr x xσ σ= = , 1 3( , 0)x xϕϕσ = ] 
with the radial coordinate 1r x= are presented in Figs. 14-16. Owing to the spherical symmetry 
the presented results correspond to the following spherical components: 

1 3( , , ) ( , 0, 0)r ru r u x xϕ ω ϕ′ ′ = = = , 1 3( , , ) ( , 0, 0)r r rrr x xσ ϕ ω σ ϕ′ ′ ′ = = = , 

1 3( , , ) ( , 0, 0)r x xϕϕ ϕϕσ ϕ ω σ ϕ′ = = = . 
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Fig. 14 Variation of radial displacements with the radial coordinate  

 
The results for radial stresses are compared also with the analytical solution (Chen et al., 2002) 
for constant material coefficients. One can observe that functionally graded material properties 
have a stronger influence on radial displacement values than on the radial stresses. With 
increasing gradation of elastic parameters the radial displacements are reduced. However, the 
influence of the material gradation on the hoop stresses is different on the inner and outer radii. 
On the outer radius the hoop stresses are enhanced with increasing material gradation while on 
the inner radius they are reduced. 
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Fig. 15 Variation of radial stresses with the radial coordinate  
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Fig. 16 Variation of hoop stresses with the radial coordinate  

Next, a uniform electrical load on the outer radius 21 /rD C m=  and traction-free surfaces are 
considered. Variation of the radial displacements, hoop stresses, the electrical potential and the 
electrical displacement with the radial coordinate are presented in Figs. 17-20. 
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Fig. 17 Variation of radial displacements with the radial coordinate in the hollow sphere 

under a static electrical displacement on the outer radius 
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Fig. 18 Variation of hoop stresses with the radial coordinate in the hollow sphere under a static 

electrical displacement on the outer radius 
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Fig. 19 Variation of the electrical potential with the radial coordinate in the hollow sphere under 

a static electrical displacement on the outer radius 
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Fig.20 Variation of electrical displacements with the radial coordinate in the hollow sphere 

under a static electrical displacement on the outer radius 
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The impact pressure load with a uniform distribution on the inner radius is considered too. 
Vanishing electrical potentials are considered on both spherical surfaces (the closed-circuit 
electric condition). The numerical results for radial displacements and hoop stresses are 
presented in Figs. 21 and 22. Both quantities are normalized by corresponding static ones, 

11( ) 0.465 10stat
ru a m−= ⋅  and 2( ) 1.71 /stat a N mϕϕσ = , respectively. The Laplace transform approach 

was applied in the numerical analysis. The mass density is considered to be uniform even for 
functionally graded material. 
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Fig. 21 Time variation of radial displacements in the hollow sphere under an impact pressure 

load on the inner radius 

 
The time evolution of the hoop stresses on the inner radius r a′ = is compared also with the 
analytical results given by Ding et al. (2003) in case of homogeneous medium. One can observe 
a good agreement of analytical and MLPG results for a homogeneous piezoelectric sphere. For 
the gradual increase of mechanical material properties with radial coordinate and a uniform mass 
density, the wave propagation velocity is increasing with r. Therefore, the peak value of the 
radial displacements and hoop stresses are reached in an earlier time instant in FGPM hollow 
sphere than in a homogeneous one. The maximum quantities are reduced for the FGPM sphere. 
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Fig. 22 Time variation of hoop stresses in the hollow sphere under an impact pressure load on 

the inner radius 

 

4.4  Edge crack in a finite magneto-electric-elastic strip 

Next, an edge crack in a finite magneto-electric-elastic strip is analyzed. The geometry of the 
cracked specimen is the same as in the previous example. We have used again 930 equidistantly 
distributed nodes for the MLS approximation of the physical fields. On the top of the strip either 
a uniform tension 0σ , or a uniform magnetic induction 0B  is applied. Firstly, the static 
loadings are considered. The functionally graded material properties in the 1x -direction are 
considered. An exponential variation of the elastic, piezoelectric, dielectric, paramagnetic, 
electromagnetic and magnetic permeability coefficients are assumed as 

    0 1( ) exp( )ij ij ff f xγ=x ,                                                                                                           (44) 

where the symbol ijf  is commonly used for particular material coefficients 
with 0ijf corresponding to the material coefficients for the 3 2 4BaTiO -CoFe O composite and 
being given by Li (2000) as 

10 2
11 22.6 10c Nm−= × ,  10 2

13 12.4 10c Nm−= ×  ,   10 2
33 21.6 10c Nm−= × ,   10 2

66 4.4 10c Nm−= × , 

 2
15 5.8e Cm−= ,    2

31 2.2e Cm−= − ,    2
33 9.3e Cm−= , 

 9 2 2
11 5.64 10 /h C Nm−= × ,  9 2 2

33 6.35 10 /h C Nm−= × , 
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 15 275.0 /d N Am= ,    21 290.2 /d N Am= ,    22 350.0 /d N Am= , 

 12
11 5.367 10 /Ns VCα −= × ,  12

33 2737.5 10 /Ns VCα −= × , 

 6 2 2
11 297.0 10 Ns Cγ − −= × ,  6 2 2

33 83.5 10 Ns Cγ − −= × , 35500 /kg mρ =  

and the origin 1 0x =  is assumed at the crack tip. 
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Fig. 23 Normalized stress intensity factor for an edge crack in a strip under a pure mechanical 

load 0 ( 0)Hσ τ −  

We have considered the same exponential gradient for all coefficients with value 2γ =  in the 
numerical calculations. Then, all material parameters at the crack tip are 1 2.718e =  times larger 
than in the homogeneous material. Then, the crack opening displacement and potentials are 
significantly reduced in the nonhomogeneous material with gradually increasing material 
properties in 1x -direction. The normalized stress intensity factors for homogeneous and 

nonhomogeneous cracked specimen have the following values, 0/ 2.105I If K aσ π= =  and 
1.565, respectively. With increasing gradient parameter γ  the SIF is decreasing. A similar 
phenomenon is observed for an edge crack in an elastic FGM strip under a mechanical loading 
(Dolbow and Gosz, 2002) and for a cracked piezoelectric FGM specimen (Sladek et al., 2007a). 
For a crack in a homogeneous magneto-electric-elastic solid analyzed in the previous example 
the SIF, EDIF, magnetic induction intensity factor (MIIF) are uncoupled. However, this 
conclusion is not valid generally for a continuously nonhomogeneous solid. We have obtained 
the following normalized quantities: / 0.04866stat

e E IK KΛ =  and  / 0.00412stat
m M IK KΛ = . For 
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normalized electrical displacement and magnetic induction intensity factor we have used 
parameters 33 33/e e hΛ = and 33 33/m d γΛ = , respectively. 
Next, the strip is subjected to an impact mechanical load with Heaviside time variation and the 
intensity 0 1Paσ = . The impermeable boundary conditions for the electric displacement and 
magnetic flux on crack surfaces are considered. The time variation of the normalized stress 
intensity factor is given in Fig. 23, where 1/ 22.642Pa mstat

IK = ⋅ . The boundary value problem for 
a homogeneous material has been analyzed also by the FEM computer code ANSYS. One can 
observe a quite good agreement of results. For graded elasticity coefficients along the 1x -
coordinate and a uniform mass density, the wave propagation is growing with 1x . Therefore, the 
peak value of the SIF is reached in a shorter time instant in functionally graded strip than in a 
homogeneous one. The maximum value of the SIF is only slightly reduced for the FGM cracked 
strip. 
 

4.5 A penny-shaped crack in a finite cylinder      

A penny-shaped crack in a finite cylinder as depicted in Fig. 24 is analyzed as the third example. 
The following geometry is considered: crack radius 0.5a = , cylinder radius 1.25w = , and 
cylinder length 2 3.0L = . On the top of the cylinder either a uniform tension 0σ , or a uniform 
magnetic induction 0B   are applied, firstly as static loads.  
Also in this example, an exponential variation of the magneto-electro-elastic material parameters 
in radial direction is assumed, i.e., 

     0( ) exp( )ij ij ff r f rγ= .          

The material coefficients at the axis of symmetry corresponding to the 
3 2 4BaTiO -CoFe O composite are given by (Wang and Mai, 2007) 

 10 2
11 22.6 10c Nm−= × , 10 2

13 12.4 10c Nm−= ×  ,   10 2
33 21.6 10c Nm−= × ,   10 2

44 4.4 10c Nm−= × , 

  10 2
12 12.5 10c Nm−= × , 2

15 5.8e Cm−= ,    2
31 2.2e Cm−= − ,    2

33 9.3e Cm−= , 

  9 2 2
11 5.64 10 /h C Nm−= × ,  9 2 2

33 6.35 10 /h C Nm−= × , 

  15 275.0 /d N Am= ,    31 290.2 /d N Am= ,    33 350.0 /d N Am= , 

  12
11 5.367 10 /Ns VCα −= × ,  12

33 2737.5 10 /Ns VCα −= × , 

  6 2 2
11 81.0 10 Ns Cγ − −= × ,  6 2 2

33 83.5 10 Ns Cγ − −= × , 35500 /kg mρ = . 
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Fig. 24 A penny-shaped crack in a finite magneto-electro-elastic cylinder 
 
Numerical calculations are carried out for the gradient parameter 2.γ =  A regular node 
distribution with 930 (31x30) nodes is used for the MLS-approximation of the displacements and 
the potentials in the analyzed domain ABCDE (see Fig.24).  
The static values of the SIF for the homogeneous and FGM cracked cylinder are 

1/ 20.813Pa mstat
IK = ⋅ and 1/ 20.353Pa mFGM

IK = ⋅ , respectively. The SIF in the cracked cylinder 
with positive material properties gradient is significantly reduced in comparison with the SIF for 
the corresponding homogeneous cylinder. This is due to the significant reduction of the crack 
opening displacement in the FGM cylinder as presented in Fig. 25. One can also see a good 
agreement of numerical results obtained by the MLPG method and the FEM for a cracked 
homogeneous cylinder. 
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Fig. 25 Variation of the crack opening displacement with the normalized coordinate / 2r a  in the 

cracked cylinder under a pure mechanical loading 0 1Paσ = .  
  
Variation of the electric and magnetic potentials with the radial coordinate under a pure 
mechanical loading 0 1Paσ =  is presented in Fig. 26. The EDIF and MIIF vanish in the static 
case with a pure mechanical load in the homogeneous cylinder. Both the electrical and magnetic 
potentials are significantly reduced in the FGM cylinder with respect to the homogeneous one. A 
good agreement between the MLPG and FEM results is again observed for both potentials in a 
homogeneous cylinder. 
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Fig. 26 Variation of a) the electric, and b) magnetic potentials with the normalized coordinate 
/ 2r a  under a pure mechanical loading 0 1Paσ =  in the cracked cylinder. 
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Next, the cracked cylinder is subjected to an impact mechanical load with Heaviside time 
variation and the intensity 0 1Paσ = . Impermeable boundary conditions for the electric 
displacement and magnetic flux on crack surfaces are considered. The time variation of the 
normalized stress intensity factor is given in Fig. 27, where 1/ 20.813Pa mstat

IK = ⋅  corresponds to 
the corresponding homogeneous case. 
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Fig. 27 Normalized stress intensity factor for a penny-shaped crack in a cylinder under a pure 

mechanical load 0 ( 0)Hσ τ −  
 

The picks of the SIF in Fig. 27 for the FGM cylinder are significantly reduced with respect to the 
homogeneous case. The reduction is proportional to the reduction of the static stress intensity 
factors in both cases. If the dynamic SIF in the FGM cylinder is normalized by the 
corresponding static value 1/ 20.353Pa mFGM

IK = ⋅  one obtains almost the same pick value as in 
the homogeneous case. The peak value of the SIF in FGM cylinder is reached at a shorter time 
instant than in the corresponding homogeneous one. It is due to the higher value of the wave 
velocity in the FGM cylinder than in the homogeneous one. 
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Fig. 28 Normalized  a) electric, and b) magnetic intensity factors for a penny-shaped crack in a 

cylinder under a pure mechanical load 0 ( 0)Hσ τ −  
 



 38 

For normalized electrical displacement and magnetic induction intensity factors we have used 
parameters 33 33/e e hΛ = and 33 33/m d γΛ = , respectively. Numerical results are presented in Fig. 
28. Opposite to the static case, finite values of EDIF and MIIF are obtained under a pure 
mechanical impact load in the homogeneous cylinder too. Both dynamic quantities for FGM 
cylinder are oscillating around the static values which are: / 0.00655stat

e E IK KΛ =  and  
3/ 0.831 10stat

m M IK K −Λ = − ⋅ . 
 
5. Conclusions 
A meshless local Petrov-Galerkin method (MLPG) is presented for modelling 2-D and 3-D 
axisymmetric piezoelectric and magneto-electric-elastic problems. Both static and impact loads 
are considered. The Laplace-transform technique is applied to eliminate the time variable in the 
coupled governing partial differential equations. The analyzed domain is divided into small 
overlapping circular subdomains. A unit step function is used as the test function in the local 
weak-form of the governing partial differential equations. The derived local boundary-domain 
integral equations are non-singular. The moving least-squares (MLS) scheme is adopted for the 
approximation of the physical field quantities.  The proposed method is a truly meshless method, 
which requires neither domain elements nor background cells in either the interpolation or the 
integration.  
The present method is an alternative numerical tool to many existing computational methods like 
FEM or BEM. The main advantage of the present method is its simplicity. Compared to the 
conventional BEM, the present method requires no fundamental solutions and all integrands in 
the present formulation are regular. Thus, no special numerical techniques are required to 
evaluate the integrals. It should be noted here that the fundamental solutions are not available for 
magneto-electric-elastic solids with continuously varying material properties in general cases. 
The present formulation also possesses the generality of the FEM. Therefore, the method is 
promising for numerical analysis of multi-field problems like piezoelectric, electro-magnetic or 
thermoelastic problems, which cannot be solved efficiently by the conventional BEM.  
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Abstract

The Eulerian–Lagrangian method of fundamental solutions is proposed to solve the two-dimensional unsteady Burgers’ equations.

Through the Eulerian–Lagrangian technique, the quasi-linear Burgers’ equations can be converted to the characteristic diffusion

equations. The method of fundamental solutions is then adopted to solve the diffusion equation through the diffusion fundamental

solution; in the meantime the convective term in the Burgers’ equations is retrieved by the back-tracking scheme along the characteristics.

The proposed numerical scheme is free from mesh generation and numerical integration and is a truly meshless method. Two-

dimensional Burgers’ equations of one and two unknown variables with and without considering the disturbance of noisy data are

analyzed. The numerical results are compared very well with the analytical solutions as well as the results by other numerical schemes. By

observing these comparisons, the proposed meshless numerical scheme is convinced to be an accurate, stable and simple method for the

solutions of the Burgers’ equations with irregular domain even using very coarse collocating points.

r 2007 Elsevier Ltd. All rights reserved.

Keywords: Eulerian–Lagrangian method; Method of fundamental solutions; Burgers’ equations; Diffusion fundamental solution; Meshless method

1. Introduction

The Burgers’ equation was initially studied for the
weather problem in 1915 by Bateman [1] and was extended
to model turbulence and shock wave by Burgers [2].
Besides, the Burgers’ equation is a useful model for many
interesting physical problems [3], such as shock wave,
acoustic transmission, traffic and aerofoil flow theory,
turbulence and supersonic flow as well as a prerequisite
to the Navier–Stokes equations. The problems modeled
by the Burgers’ equation can be considered as an
evolutionary process in which a convective phenomenon
is in contrast with a diffusive phenomenon. It is possible
to obtain the exact solutions of the Burger’s equation
for simple geometry by the Cole–Hopf transformation
[4,5]. The known exact solutions of the Burgers’ equation
are tabulated by Benton and Platzman [6] as well as
Fletcher [7].

Although there are some analytic solutions available in
the literature, the exact solutions for the practical applica-
tions are very limited due to the complex geometry and
complicated initial and boundary conditions. The numer-
ical methods developed more than three decades seem to
serve as a satisfactory alternative to solve the unsteady
Burger’s equations. Most of the existing numerical
methods in previous studies were reported successfully to
be able to solve the Burgers’ equations, such as the finite
difference method (FDM) [8–10], the finite element method
(FEM) [11,12] and the boundary element method (BEM)
[13,14]. For example, for the Burgers’ equation Bahadir [8]
proposed a fully implicit finite difference scheme and
Radwan [10] used a fourth-order compact scheme and the
fourth-order Du Fort Frankel algorithm. In addition,
Froncioni et al. [11] proposed the discontinuous-Galerkin
space–time finite element formulation using the simplex-
type meshes. In the meantime, Kutluay et al. [12] used the
least-squares quadratic B-spline FEM to handle the
unsteady Burgers’ equations. In comparing with FDM
and FEM, the BEM appears to be a better alternative to
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simulate the physical problems due to the reduction of one
dimension. Kakuda and Tosaka [14] adopted the general-
ized BEM to treat the Burgers’ equations while Chino and
Tosaka [13] used the dual reciprocity BEM. The numerical
methods discussed above can be used to solve the unsteady
Burgers’ equations; however the large amount of efforts
should be paid during the numerical implementation. The
time-consuming mesh generation of FDM and FEM as

well as the complicated singular integrals of BEM always
bothered researchers. The drawbacks make these conven-
tional numerical methods very difficult to efficiently deal
with the Burgers’ equations especially for treating the
nonlinear, multidimensional flows and irregular domain
problems.
The developments of the so-called meshless or meshfree

methods catch the researchers’ attentions recently. There
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Fig. 3. Error profiles of problem 1 at different time levels (Re ¼ 1, Dt ¼ 0.01, N ¼ 64). (a) t ¼ 0.10; (b) t ¼ 1.00; (c) t ¼ 3.00; (d) t ¼ 9.00.

Fig. 4. Velocity profiles of problem 1 at different time levels (Re ¼ 20, Dt ¼ 0.001, N ¼ 441). (a) t ¼ 0.50; (b) t ¼ 0.75; (c) t ¼ 1.00; (d) t ¼ 1.25.
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are several meshless methods developed in the past decade
and some available methods are the multiquadrics (MQ)
method [15,16], the meshless local Petrov-Galerkin
(MLPG) method [17–20] and the method of fundamental
solutions (MFS) [21–29]. Hon and Mao [15] applied the
MQ method to the one-dimensional unsteady Burgers’
equation, while Li et al. [16] used the MQ method to solve
two-dimensional problems. Though the MQ method can
simply solve the Burgers’ equations, the choice of a suitable
shape parameter which will influence the stability of the
numerical scheme is still an open topic. This handicap
drastically limits the developments and applications of the
MQ method. The MFS, which is similar to the BEM due to
the reduction of one dimension, is free from the mesh
generation and numerical integration. The MFS was
originally proposed by Kupradze and Aleksidze [24] and
has been extended to the solution of Poisson’s equation by
Golberg [21]. Karageorghis and Fairweather [23] adopted
the MFS to model the biharmonic equation. On the other
hand, Young and Ruan [26] analyzed the electromagnetic
waves scattering problems by MFS, and Young et al. [27]
used the Stokeslets and MFS to simulate the Stokes flow in
a rectangular cavity with cylinders. Under the novel
concept of time–space unification, Young et al. [28,29]
solved the time-dependent diffusion equations by the

diffusion fundamental solution and MFS which can avoid
the Laplace transform or finite difference method in
discretizing the time state. The time-dependent MFS is
further applied to the Stokes’ first and second problems in
a semi-infinite domain by Hu et al. [22].
The MFS is successfully applied to solve the linear

diffusion equation since the numerical results are assumed
to be the linear combination of the time-dependent
diffusion fundamental solutions. Due to the existence of
the convective term in the Burgers’ equations, the MFS
cannot be used directly for the Burgers’ equations. The
convective term of the unsteady Burgers’ equation can be
dealt with by the Eulerian–Lagrangian method (ELM)
[25,30]. The ELM combines the computational powers of
the Eulerian and Lagrangian approaches, so as to
incorporate the merits of a fixed Eulerian coordinate and
a moving Lagrangian coordinate. The combination of the
ELM and BEM has been successfully applied to the
advection–diffusion equations [30], while the same pro-
blems are also simulated by using the Eulerian–Lagrangian
method of fundamental solutions (ELMFS) [25]. The use
of ELM can be regarded as changing the physical
viewpoint of the problem from a fixed to moving path.
In this study, the Burgers’ equations will be converted to
the characteristic diffusion equations by ELM, and then
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Fig. 5. Error profiles of problem 1 at different time levels (Re ¼ 20, Dt ¼ 0.001, N ¼ 441). (a) t ¼ 0.50; (b) t ¼ 0.75; (c) t ¼ 1.00; (d) t ¼ 1.25.
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the diffusion equations will be solved by the MFS.
After the diffusion solutions are found by MFS, the
convective term of the Burgers’ equations can be obtained
by the back-tracking scheme through the characteristics
[25,30]. This ELMFS technique has been successfully
applied to the one-dimensional unsteady Burgers’ equa-
tions by Young [31].
The aim of this study is to demonstrate the capability

and simplicity of the ELMFS to solve the unsteady
nonlinear two-dimensional Burgers’ equations. The gov-
erning equations and numerical method will be explained
in Sections 2 and 3, respectively. The numerical results and
conclusions will be provided, respectively, in Sections 4 and
5. There are three case study problems adopted in this
article and the numerical results are compared very well
with the analytical solutions as well as other numerical
solutions.

2. Governing equations

The two-dimensional Burgers’ equations with two
variables are similar to the incompressible Navier–Stokes
equations without considering pressure term and continu-
ity equation. We will consider the following system of the
two-dimensional Burgers’ equations:

qu

qt
þ u

qu

qx
þ v

qu

qy
¼

1

Re

q2u
qx2
þ

q2u
qy2

� �
, (1)

qv

qt
þ u

qv

qx
þ v

qv

qy
¼

1

Re

q2v
qx2
þ

q2v

qy2

� �
(2)

subject to the initial conditions:

uðx; y; t0Þ ¼ f1ðx; yÞ ðx; yÞ 2 O, (3)

vðx; y; t0Þ ¼ f2ðx; yÞ ðx; yÞ 2 O (4)

and the boundary conditions:

Luðx; y; tÞ ¼ f3ðx; y; tÞ ðx; yÞ 2 qO; (5)

Lvðx; y; tÞ ¼ f4ðx; y; tÞ ðx; yÞ 2 qO; (6)

where O and qO denote the computational domain and the
associated boundary. L is a boundary differential operator.
uðx; y; tÞ and vðx; y; tÞ are the two unknown variables which
can be regarded as the velocities in fluid-related problems.
f1ðx; yÞ, f2ðx; yÞ, f3ðx; y; tÞ and f4ðx; y; tÞ are all known
functions. Re is the Reynolds number, and t0 is the initial
time.
According to the relative weighting of the diffusive and

convective terms (Re) in the Burgers’ equations, the
Burgers’ equations will behave as elliptic, parabolic or
hyperbolic type of partial differential equations.

3. Numerical method

The two-dimensional Burgers’ equations, Eqs. (1) and (2),
can be transferred to the following two characteristic
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diffusion equations using the ELM:

Du

Dt
¼

1

Re

q2u
qx2
þ

q2u
qy2

� �
, (7)

Dv

Dt
¼

1

Re

q2v

qx2
þ

q2v
qy2

� �
, (8)

where the total or material derivative including the
convective term is defined as [25,30]

D

Dt
¼

q
qt
þ u

q
qx
þ v

q
qy

. (9)

Since the two-dimensional Burgers’ equations are con-
verted to the characteristic diffusion equations, the MFS is

first adopted to solve the diffusion equations [28,29]. In
MFS, the diffusion solution can be represented as the
linear combination of the diffusion fundamental solutions
with different source intensities. The fundamental solution
of the linear diffusion equation is governed by

qGð~x; t;~x; tÞ
qt

¼
1

Re
r2Gð~x; t;~x; tÞ þ dð~x�~xÞdðt� tÞ, (10)

where Gð~x; t;~x; tÞ is the fundamental solution of the linear
diffusion equation. ~x ¼ ðx; yÞ and ~x ¼ ðx; ZÞ are the spatial
coordinates of the field and source points. t and t are the
temporal coordinates of the field and source points. d( ) is
the well-known Dirac delta function.
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Fig. 6. Velocity profiles of problem 2 at different time levels (Re ¼ 100, Dt ¼ 0.005, N ¼ 441). (a) t ¼ 0.01; (b) t ¼ 0.50; (c) t ¼ 2.00.
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By using the integral transform theory of Eq. (10), the
free-space Green’s function or the fundamental solution of
the linear diffusion equation can be obtained as

Gð~x; t;~x; tÞ ¼
e�j~x�

~xj2=½4ð1=ReÞðt�tÞ�

4pð1=ReÞðt� tÞ
� �d=2 Hðt� tÞ, (11)

where d is the dimension of the problem and is equal to two
in this study. H( ) is the Heaviside step function.

Based on the time-dependent MFS concept, we can
express the diffusion solutions of Eqs. (7) and (8) by the
combination of the diffusion fundamental solutions,

Eq. (11), as

uð~x; tÞ ¼
XN

j¼1

ajGð~x; t;~xj ; tjÞ, (12)

vð~x; tÞ ¼
XN

j¼1

bjGð~x; t;~xj ; tjÞ, (13)

where N is the number of source point. aj and bj are the
unknown coefficients which denote the source intensities of
the corresponding fundamental solutions. Once the coeffi-
cients are obtained, the velocity of any field points in the
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Fig. 7. Error profiles of problem 2 at different time levels (Re ¼ 100, Dt ¼ 0.005, N ¼ 441). (a) t ¼ 0.01; (b) t ¼ 0.50; (c) t ¼ 2.00.
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time–space domain can be acquired by using Eqs. (12) and
(13) accordingly.

In our numerical experiments, the numbers of field and
source points are chosen the same, and both are equal to N

so that square matrices are formed. The locations of field
and source points are illustrated in Fig. 1(a), and the field
and source points are located at the same spatial positions
but at different time levels. In Fig. 1(a), the parameter, l, is
chosen as a function of the maximum distance of the
spatial domain (R) and it can be expressed as lðDtÞ ¼ mR.
By observing the diffusion fundamental solution, it is noted
that the temporal difference (t�t) between field and source
points is proportional to their spatial distance ðj~x�~xjÞ.
Hence we will use the empirical formula to determine the
temporal location of the source points. In the section
of numerical results, it will be elaborated that the pro-
posed formula performs well and provides a useful
guide to determine the time level of the source points.
m is an adaptive parameter which can be chosen by the
trial and error process. By collocating the initial and
boundary conditions, two matrices are formed by utilizing
Eqs. (3)–(6), (12) and (13):

½Au�fag ¼ ½f u�, (14)

½Av�fbg ¼ ½f v�. (15)

The components of [Au] and [Av] are the representation
of the fundamental solutions. ff ug is the combination of
f1ðx; yÞ and f3ðx; y; tÞ, and ff vg is the combination of
f2ðx; yÞ and f4ðx; y; tÞ. The unknown coefficients, or the
source intensities of the fundamental solutions, can be
obtained by inverting the above two matrices, Eqs. (14)
and (15). The function values inside the time–space box at
t ¼ ðnþ 1ÞDt can thus be acquired from Eqs. (12) and (13).

The results of the Burgers’ equations with convective
term can be retrieved from the numerical diffusion results
by back-tracking the particles along the line of character-
istics. In the ELM, the convective velocities in the Burgers’
equations are expressed in terms of the spatial and time
increments as follows:

u ¼
dx

dt
¼

xnþ1 � xn

Dt
, (16)

v ¼
dy

dt
¼

ynþ1 � yn

Dt
, (17)

xn ¼ xnþ1 � uDt, (18)

yn ¼ ynþ1 � vDt. (19)

In Fig. 1(b), the line AB is the characteristic path on
which the transport of the scalar quantity can be traced. If
the velocities at point A are required, the spatial location of
point B can be traced by Eqs. (18) and (19). When the
spatial location of point B is determined, the solutions
along characteristics AB will follow the characteristic
diffusion operators, Eqs. (7) and (8), according to the

material derivative and the diffusion equations. After the
diffusion process is calculated by the time-dependent MFS,
the velocities at point C can be obtained to represent the
velocities at point A. Points B and C are located at the
same spatial position but at different time levels (Fig. 1(b)).
The velocities at point A are properly replaced by the
diffusion results at point C, and then the results of the
Burgers’ equations at t ¼ ðnþ 1ÞDt thus can be acquired.
This procedure can be repeated until either the terminal
time or steady-state solution is achieved.
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4. Numerical results

To illustrate the high performance of ELMFS described
in the previous section, three Burgers’ problems will be
considered. The first one is the two-dimensional Burgers’
equation in one variable and the numerical results are
compared with the analytical solutions. The second and the
third ones are the two-dimensional Burgers’ equations in
two variables with regular and irregular domains. The
results of the second problem are in good agreement with
the analytical solutions and show better performance than
the FDM [8]. In the second problem the study of the
disturbance of noisy initial and boundary data is also taken
into consideration. In order to demonstrate the flexibility
of the ELMFS, the third problem is devoted to an irregular
computational domain which is nontrivial by the conven-
tional numerical methods.

4.1. Problem 1

The first validation problem is the unsteady Burgers’
equation in one variable which is described as below:

qu

qt
þ u

qu

qx
þ u

qu

qy
¼

1

Re

q2u

qx2
þ

q2u
qy2

� �
(20)

and the analytical solution is [16]

uðx; y; tÞ ¼
1

1þ expðReðxþ y� tÞ=2Þ
. (21)

The computational domain is O ¼ fðx; yÞ : 0pxp1;
0pyp1g. The numerical results of velocity for Re ¼ 1
are shown in Fig. 2. The evolutionary process can be
observed in the figure and the absolute errors are depicted
in Fig. 3. Since the convective term is not large in
comparing with the diffusion term, the diffusion process
varies smoothly. The absolute errors in Fig. 3 are quite
small, so it is proven that ELMFS can handle the Burgers’
equation at low Reynolds number. Additionally, the
numerical results in Re ¼ 20 are displayed in Fig. 4 and
the absolute errors are depicted in Fig. 5. It is easy to find
conspicuously a sharp gradient which moves with time in
Fig. 4 as Re increases and the absolute errors in Fig. 5 also
move with that front. The errors will occur near the sharp
front in any numerical method and the absolute errors in
this test are acceptable. The complete numerical results,
absolute errors and analytical solutions are tabulated in
Table 1. By observing the detailed comparison of
numerical and analytical results, it is convinced that the
proposed scheme is very simple, stable and accurate for the
solutions of the Burgers’ equation. There is no iteration

ARTICLE IN PRESS

Table 2

Numerical solutions of (a) u and (b) v at different time levels in some specific points of problem 2 (Re ¼ 10, Dt ¼ 0.01, N ¼ 441)

x y t ¼ 0.01 t ¼ 0.5 t ¼ 2.0

Analytical solution MFS |ERROR| Analytical solution MFS |ERROR| Analytical solution MFS |ERROR|

(a)

0.10 0.10 0.62481 0.62481 3.59E�07 0.61525 0.61526 3.10E�06 0.58716 0.58716 2.63E�06

0.50 0.10 0.59420 0.59420 2.05E�07 0.58540 0.58540 3.57E�06 0.56127 0.56127 2.80E�06

0.90 0.10 0.56708 0.56708 1.53E�07 0.55984 0.55984 2.15E�06 0.54113 0.54113 1.97E�06

0.30 0.30 0.62481 0.62480 3.26E�07 0.61525 0.61526 7.62E�06 0.58716 0.58717 6.02E�06

0.70 0.30 0.59420 0.59420 1.81E�07 0.58540 0.58540 6.44E�06 0.56127 0.56128 4.98E�06

0.10 0.50 0.65543 0.65543 3.04E�07 0.64628 0.64628 5.38E�06 0.61720 0.61720 5.17E�06

0.50 0.50 0.62480 0.62480 2.96E�07 0.61525 0.61527 1.14E�05 0.58716 0.58717 9.83E�06

0.90 0.50 0.59420 0.59420 1.75E�07 0.58540 0.58540 5.91E�06 0.56127 0.56128 5.12E�06

0.30 0.70 0.65543 0.65543 3.15E�07 0.64628 0.64629 1.13E�05 0.61720 0.61721 1.10E�05

0.70 0.70 0.62480 0.62480 2.76E�07 0.61525 0.61527 1.24E�05 0.58716 0.58717 1.22E�05

0.10 0.90 0.68261 0.68261 3.13E�07 0.67481 0.67482 4.77E�06 0.64817 0.64817 5.26E�06

0.50 0.90 0.65543 0.65543 3.10E�07 0.64628 0.64629 1.02E�05 0.61720 0.61721 1.09E�05

0.90 0.90 0.62480 0.62481 3.07E�07 0.61525 0.61526 6.57E�06 0.58716 0.58717 6.73E�06

(b)

0.10 0.10 0.87520 0.87520 1.98E�07 0.88475 0.88475 9.89E�07 0.91284 0.91284 1.71E�06

0.50 0.10 0.90580 0.90580 1.82E�07 0.91460 0.91461 6.70E�07 0.93873 0.93873 1.73E�06

0.90 0.10 0.93292 0.93292 4.56E�09 0.94016 0.94016 1.39E�06 0.95887 0.95887 2.22E�06

0.30 0.30 0.87520 0.87520 2.74E�07 0.88475 0.88474 3.35E�06 0.91284 0.91284 1.06E�06

0.70 0.30 0.90580 0.90580 2.24E�07 0.91460 0.91460 2.90E�06 0.93873 0.93873 4.00E�07

0.10 0.50 0.84457 0.84457 3.73E�07 0.85372 0.85372 1.66E�06 0.88280 0.88280 2.98E�07

0.50 0.50 0.87520 0.87519 3.13E�07 0.88475 0.88474 7.58E�06 0.91284 0.91283 4.37E�06

0.90 0.50 0.90580 0.90580 2.32E�07 0.91460 0.91460 3.21E�06 0.93873 0.93873 9.19E�07

0.30 0.70 0.84457 0.84457 3.69E�07 0.85372 0.85372 7.51E�06 0.88280 0.88280 6.12E�06

0.70 0.70 0.87520 0.87519 3.42E�07 0.88475 0.88474 9.96E�06 0.91284 0.91283 7.09E�06

0.10 0.90 0.81739 0.81739 2.29E�07 0.82519 0.82519 6.48E�07 0.85183 0.85183 4.19E�07

0.50 0.90 0.84457 0.84457 3.61E�07 0.85372 0.85372 7.91E�06 0.88280 0.88280 6.89E�06

0.90 0.90 0.87520 0.87520 2.83E�07 0.88475 0.88474 4.23E�06 0.91284 0.91284 2.69E�06
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process required by the ELMFS as far as the nonlinear
Burgers’ problem is concerned

4.2. Problem 2

The second validation problem is the unsteady Burgers’
equations in two variables, Eqs. (1) and (2). The analytical
solutions can be obtained by the Cole–Hopf transforma-
tion [4,5,7] and have been used as a test problem by
Bahadir [8]:

uðx; y; tÞ ¼
3

4
�

1

4 1þ expðð�4xþ 4y� tÞðRe=32ÞÞ
� � , (22)

vðx; y; tÞ ¼
3

4
þ

1

4 1þ expðð�4xþ 4y� tÞðRe=32ÞÞ
� � . (23)

The computational domain is O ¼ fðx; yÞ : 0pxp1;
0pyp1g. The initial and boundary conditions are taken
from the analytical solutions. The numerical results are
shown in Fig. 6 when Re ¼ 100. It is noted that there are
sharp gradients which move toward the same direction in
the u and v distributions, respectively. The nonlinear term
dominates the evolutionary process and there appears a
wave-like profile in Fig. 6 at Re ¼ 100. The absolute errors
are displayed in Fig. 7 and the same phenomenon is
revealed clearly that errors will move with the fronts. The
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Table 3

Numerical solutions of u at different time levels in some specific points of problem 2 (Re ¼ 100, Dt ¼ 0.005)

x y Analytical solution N ¼ 11� 11 N ¼ 21� 21 N ¼ 21� 21

ELMFS |ERROR| ELMFS |ERROR| FDM [8] |ERROR|

t ¼ 0.01

0.1 0.1 0.62305 0.62323 1.87E�04 0.62229 7.58E�04 0.62310 5.30E�05

0.5 0.1 0.50162 0.50141 2.11E�04 0.50154 8.37E�05 0.50161 1.21E�05

0.9 0.1 0.50001 0.50035 3.36E�04 0.49995 6.01E�05 0.50000 1.10E�05

0.3 0.3 0.62305 0.62306 1.79E�05 0.62308 2.98E�05 0.62311 6.30E�05

0.7 0.3 0.50162 0.50201 3.84E�04 0.50164 2.17E�05 0.50162 2.07E�06

0.1 0.5 0.74827 0.74863 3.59E�04 0.74826 1.27E�05 0.74827 4.04E�06

0.5 0.5 0.62305 0.62321 1.60E�04 0.62307 2.68E�05 0.62311 6.30E�05

0.9 0.5 0.50162 0.50143 1.95E�04 0.50159 3.68E�05 0.50162 2.07E�06

0.3 0.7 0.74827 0.74774 5.39E�04 0.74827 7.19E�06 0.74827 4.04E�06

0.7 0.7 0.62305 0.62302 2.56E�05 0.62308 3.53E�05 0.62311 6.30E�05

0.1 0.9 0.74999 0.74969 2.94E�04 0.74992 6.74E�05 0.74998 8.29E�06

0.5 0.9 0.74827 0.74854 2.71E�04 0.74826 1.29E�05 0.74827 4.04E�06

0.9 0.9 0.62305 0.62305 1.04E�06 0.62269 3.62E�04 0.62311 6.30E�05

t ¼ 0.5

0.1 0.1 0.54332 0.53566 7.66E�03 0.54241 9.12E�04 0.54235 9.72E�04

0.5 0.1 0.50035 0.50150 1.14E�03 0.50024 1.17E�04 0.49964 7.13E�04

0.9 0.1 0.50000 0.50432 4.32E�03 0.49999 7.65E�06 0.49931 6.92E�04

0.3 0.3 0.54332 0.54905 5.73E�03 0.54427 9.48E�04 0.54207 1.25E�03

0.7 0.3 0.50035 0.50193 1.58E�03 0.50030 5.40E�05 0.49961 7.43E�04

0.1 0.5 0.74221 0.73665 5.56E�03 0.74222 4.84E�06 0.74130 9.14E�04

0.5 0.5 0.54332 0.54347 1.51E�04 0.54366 3.39E�04 0.54222 1.10E�03

0.9 0.5 0.50035 0.50025 9.80E�05 0.50030 5.60E�05 0.49997 3.83E�04

0.3 0.7 0.74221 0.74263 4.14E�04 0.74220 1.51E�05 0.74145 7.64E�04

0.7 0.7 0.54332 0.54331 1.08E�05 0.54367 3.45E�04 0.54243 8.92E�04

0.1 0.9 0.74995 0.75128 1.34E�03 0.74991 3.92E�05 0.74913 8.16E�04

0.5 0.9 0.74221 0.74218 3.82E�05 0.74230 8.93E�05 0.74201 2.04E�04

0.9 0.9 0.54332 0.54338 5.66E�05 0.54377 4.44E�04 0.54232 1.00E�03

t ¼ 2.0

0.1 0.1 0.50048 0.49845 2.03E�03 0.50012 3.59E�04 0.49983 6.52E�04

0.5 0.1 0.50000 0.50142 1.41E�03 0.49996 3.95E�05 0.49930 7.03E�04

0.9 0.1 0.50000 0.50201 2.01E�03 0.49995 4.57E�05 0.49930 7.00E�04

0.3 0.3 0.50048 0.49020 1.03E�02 0.50042 6.05E�05 0.49977 7.12E�04

0.7 0.3 0.50000 0.49589 4.11E�03 0.49999 1.53E�05 0.49930 7.03E�04

0.1 0.5 0.55568 0.55469 9.86E�04 0.55516 5.15E�04 0.55461 1.07E�03

0.5 0.5 0.50048 0.49774 2.74E�03 0.50041 7.31E�05 0.49973 7.52E�04

0.9 0.5 0.50000 0.49878 1.22E�03 0.49999 1.18E�05 0.49931 6.93E�04

0.3 0.7 0.55568 0.56310 7.42E�03 0.55587 1.95E�04 0.55429 1.39E�03

0.7 0.7 0.50048 0.49998 4.98E�04 0.50045 3.45E�05 0.49970 7.82E�04

0.1 0.9 0.74426 0.74114 3.12E�03 0.74416 9.21E�05 0.74340 8.56E�04

0.5 0.9 0.55568 0.55848 2.81E�03 0.55637 6.95E�04 0.55413 1.55E�03

0.9 0.9 0.50048 0.50063 1.44E�04 0.50051 2.69E�05 0.50001 4.72E�04
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maximum absolute errors of u and v at three different time
increments are shown in Fig. 8. When a smaller time step is
used, the numerical accuracy is systematically improved. It
seems that only accuracy instead of stability problem is
involved in the selection of time step. At the previous
section, we suggest that the time level of source points can
be determined by the empirical function lðDtÞ ¼ mR. When
m is set to 0.5, 1, 5 or 10 and R is equal to

ffiffiffi
2
p

, the results of
time history of maximum absolute errors are demonstrated
in Fig. 9. The numerical solution with m ¼ 0:5 is the worst
one and the result with m ¼ 1 is the best case in this
numerical test. Therefore, we suggest choosing m ¼ 1 and
all numerical results in this investigation are obtained by

m ¼ 1. The numerical results in this study show that the
empirical formula is very useful and provides a valuable
guide to determine the optimal temporal location of the
source point in the unsteady MFS. The theoretical study
and more numerical tests of the proposed formula will be
thoroughly examined in the future research.
The detailed velocity results and associated errors at

some specified points are listed in Table 2 for Re ¼ 10 and
the proposed numerical scheme is very stable and accurate
when the evolutionary process happened. The results of u

and v components for Re ¼ 100 are listed in Tables 3 and 4,
respectively, and the problem is also solved by FDM
[8]. The numerical computations were preformed using
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Table 4

Numerical solutions of v at different time levels in some specific points of problem 2 (Re ¼ 100, Dt ¼ 0.005)

x y Analytical solution N ¼ 11� 11 N ¼ 21� 21 N ¼ 21� 21

ELMFS |ERROR| ELMFS |ERROR| FDM [8] |ERROR|

t ¼ 0.01

0.1 0.1 0.87695 0.87678 1.75E�04 0.87750 5.51E�04 0.87688 7.30E�05

0.5 0.1 0.99838 0.99860 2.20E�04 0.99836 1.84E�05 0.99837 7.93E�06

0.9 0.1 0.99999 0.99966 3.28E�04 0.99988 1.06E�04 0.99998 9.00E�06

0.3 0.3 0.87695 0.87694 1.72E�05 0.87694 1.56E�05 0.87689 6.30E�05

0.7 0.3 0.99838 0.99799 3.84E�04 0.99837 5.37E�06 0.99838 2.07E�06

0.1 0.5 0.75173 0.75137 3.52E�04 0.75164 8.13E�05 0.75172 5.96E�06

0.5 0.5 0.87695 0.87679 1.59E�04 0.87692 2.92E�05 0.87689 6.30E�05

0.9 0.5 0.99838 0.99857 1.95E�04 0.99836 1.46E�05 0.99838 2.07E�06

0.3 0.7 0.75173 0.75227 5.39E�04 0.75175 2.46E�05 0.75173 4.04E�06

0.7 0.7 0.87695 0.87698 2.53E�05 0.87694 1.52E�05 0.87689 6.30E�05

0.1 0.9 0.75001 0.75031 2.99E�04 0.74993 7.84E�05 0.75001 1.71E�06

0.5 0.9 0.75173 0.75145 2.73E�04 0.75170 2.97E�05 0.75173 4.04E�06

0.9 0.9 0.87695 0.87695 2.96E�06 0.87723 2.74E�04 0.87689 6.30E�05

t ¼ 0.5

0.1 0.1 0.95668 0.96467 7.99E�03 0.95717 4.93E�04 0.95577 9.08E�04

0.5 0.1 0.99965 0.99878 8.67E�04 0.99952 1.24E�04 0.99827 1.38E�03

0.9 0.1 1.00000 0.99592 4.07E�03 0.99974 2.60E�04 0.99861 1.39E�03

0.3 0.3 0.95668 0.95127 5.41E�03 0.95551 1.16E�03 0.95596 7.18E�04

0.7 0.3 0.99965 0.99834 1.30E�03 0.99952 1.23E�04 0.99827 1.38E�03

0.1 0.5 0.75779 0.76366 5.87E�03 0.75748 3.01E�04 0.75699 7.96E�04

0.5 0.5 0.95668 0.95667 3.55E�06 0.95621 4.73E�04 0.95685 1.72E�04

0.9 0.5 0.99965 0.99990 2.52E�04 0.99957 8.09E�05 0.99903 6.17E�04

0.3 0.7 0.75779 0.75763 1.58E�04 0.75760 1.86E�04 0.75723 5.56E�04

0.7 0.7 0.95668 0.95669 1.61E�05 0.95632 3.58E�04 0.95746 7.82E�04

0.1 0.9 0.75005 0.74897 1.09E�03 0.74984 2.15E�04 0.74924 8.14E�04

0.5 0.9 0.75779 0.75786 6.92E�05 0.75769 9.33E�05 0.75781 2.40E�05

0.9 0.9 0.95668 0.95661 6.97E�05 0.95630 3.79E�04 0.95777 1.09E�03

t ¼ 2.0

0.1 0.1 0.99952 1.00191 2.40E�03 0.99946 6.02E�05 0.99826 1.26E�03

0.5 0.1 1.00000 0.99902 9.72E�04 0.99980 1.95E�04 0.99860 1.40E�03

0.9 0.1 1.00000 0.99845 1.55E�03 0.99978 2.18E�04 0.99861 1.39E�03

0.3 0.3 0.99952 1.01020 1.07E�02 0.99938 1.42E�04 0.99820 1.32E�03

0.7 0.3 1.00000 1.00454 4.54E�03 0.99984 1.56E�04 0.99860 1.40E�03

0.1 0.5 0.94432 0.94571 1.38E�03 0.94450 1.70E�04 0.94393 3.95E�04

0.5 0.5 0.99952 1.00268 3.16E�03 0.99941 1.07E�04 0.99821 1.31E�03

0.9 0.5 1.00000 1.00164 1.64E�03 0.99984 1.56E�04 0.99862 1.38E�03

0.3 0.7 0.94432 0.93727 7.06E�03 0.94387 4.56E�04 0.94409 2.35E�04

0.7 0.7 0.99952 1.00043 9.14E�04 0.99937 1.47E�04 0.99823 1.29E�03

0.1 0.9 0.75574 0.75928 3.54E�03 0.75558 1.66E�04 0.75500 7.44E�04

0.5 0.9 0.94432 0.94188 2.45E�03 0.94345 8.72E�04 0.94441 8.50E�05

0.9 0.9 0.99952 0.99977 2.49E�04 0.99938 1.42E�04 0.99846 1.06E�03
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uniform node distribution, with the number of nodes
N ¼ 121 and 441, respectively. The last columns in both
Tables 3 and 4 show the numerical results by FDM [8] with
a uniform mesh 21� 21. By examining those results, the
solution obtained by ELMFS is more accurate than FDM
[8]. Even using only 121 coarse collocating points the
ELMFS results have reached acceptable accuracy.

Furthermore, we consider the problem with noisy initial
and boundary data as follows:

uðx; y; 0Þ ¼ ð1þ k�Þ
3

4
�

1

4½1þ expðð�4xþ 4yÞðRe=32ÞÞ�

� �

ðx; yÞ 2 O; ð24Þ

vðx; y; 0Þ ¼ ð1þ k�Þ
3

4
þ

1

4½1þ expðð�4xþ 4yÞðRe=32ÞÞ�

� �

ðx; yÞ 2 O; ð25Þ

uðx; y; tÞ ¼ ð1þ k�Þ
3

4
�

1

4½1þ expðð�4xþ 4y� tÞ=ðRe=32ÞÞ�

� �

ðx; yÞ 2 qO; ð26Þ

vðx; y; tÞ ¼ ð1þ k�Þ
3

4
þ

1

4½1þ expðð�4xþ 4y� tÞ=ðRe=32ÞÞ�

� �

ðx; yÞ 2 qO; ð27Þ
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Fig. 10. Time history of maximum absolute errors of (a) u and (b) v on the

problem 2 with noisy data at Re ¼ 100 (Dt ¼ 0.005, N ¼ 441).
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where e is a uniformly distributed random number and
�1p�p1. And k is the amplitude of noise level. These
random numbers are generated by the FORTRAN
subroutine RANDOM_SEED. In our numerical experi-
ment, we solve the problems with noise levels from k ¼

10�5 to 10�2. The maximum absolute errors of u and v are
shown in Fig. 10 for different k. When the amplitude of k is
smaller than 10�2, the results are accurate. For larger
values of k (1%), the results are not as good as solutions
with smaller k but still acceptable (within 1% error). In this
test, the proposed ELMFS without regularization methods

can be used to successfully analyze problems with
moderate noise level up to k ¼ 10�2. The same conjecture
was also observed when the MFS is used to solve the
Laplace equations with the moderate noise level [32]. This
demonstrates that the present ELMFS is superior to other
numerical methods as far as dealing with moderate noise
level is concerned.
For larger noise disturbance we also consider the

regularization methods to improve the accuracy of
numerical results for k ¼ 10�2. Marin et al. [33] indicated
that more accurate results could be obtained if the singular
value decomposition (SVD) technique was used. Fig. 11
shows the time evolution of u and v at (0.5, 0.5) by the
truncated SVD (TSVD) and QR decomposition with
the regularization. The results of TSVD are obtained by
the NUMERICAL RECIPES [34] subroutine SVDCMP;
and the results of QR decomposition are found by the
FORTRAN subroutine DLSQRR. In addition, tol is a
parameter to be assigned. For TSVD, it means the singular
value smaller than tol of matrix is allowed to be zero. For
DLSQRR, it means the tolerance tol used to determine the
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subset of columns of matrix is included in the solution.
Fig. 12 shows the maximum absolute errors of u and v by
TSVD and QR decomposition (DLSQRR). Those figures
indicate that the regularization by TSVD did not improve
much numerical accuracy as DLSQRR did. Therefore, we
conclude that the DLSQRR is a powerful algorithm to
solve matrices in the regularization process. In summary,
this ELMFS technique will produce accurate and stable
solutions with or without regularization for the studied
level of noise added into the data.

4.3. Problem 3

After validating the above two problems by analytic
solutions with and without noise consideration, it is found

that the ELMFS can handle the evolutionary process of the
two-dimensional unsteady Burgers’ equations in the
regular domain. Even in the second problem, the ELMFS
will give more accurate results than the FDM. In order to
demonstrate the flexibility of the meshless method, the
computational domain is chosen as an irregular one as
shown in Fig. 13(a). The Burgers’ equations in such an
irregular domain are difficult to be handled by mesh-
dependent methods, such as FDM or FEM. The analytical
solution is the same as the one which is used in problem 2.
The initial and boundary conditions are taken from the
analytical solutions. The u, v results and absolute errors for
Re ¼ 100 are present in Figs. 14 and 15, respectively. The
fronts moved in the same direction as we expected and the
absolute errors also moved with that front. To examine
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Fig. 14. Velocity profiles of problem 3 at different time levels (Re ¼ 100, Dt ¼ 0.005, N ¼ 364). (a) t ¼ 0.01; (b) t ¼ 0.50; (c) t ¼ 2.00.
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more seriously, the velocities and absolute errors at some
specific points, which are drawn in Fig. 13(b), are recorded
in Tables 5 and 6 for Re ¼ 10 and 100, respectively. Those
results are very accurate even in an irregular domain by
inspecting these solutions in the tables. The proposed
ELMFS can render the correct results in an irregular
domain even using very coarse collocating points, and then
it is proven that this method is a simple, stable and accurate
scheme due to the features of meshless method.

5. Conclusions and discussions

The unsteady nonlinear two-dimensional Burgers’ equa-
tions are analyzed by the ELMFS which is the combination

of the ELM and the MFS. The two-dimensional quasi-
linear Burgers’ equations are converted to the characteristic
diffusion equations by the ELM, and then the MFS is
applied to the diffusion equations. Finally, the solutions of
the Burgers’ equations can be obtained by performing the
back-tracking scheme through the characteristics. The
proposed numerical scheme, which is free from mesh
generation and numerical integration, is a truly meshless
method. Therefore, it is very easy to simulate the nonlinear
Burgers’ problem in irregular domain with or without
the disturbances of noisy initial and boundary data. In
addition the unsteady MFS is applied in time–space united
system, so Laplace transform or difference discretization
for time domain is not needed. Furthermore, through this
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Fig. 15. Error profiles of problem 3 at different time levels (Re ¼ 100, Dt ¼ 0.005, N ¼ 364). (a) t ¼ 0.01; (b) t ¼ 0.50; (c) t ¼ 2.00.
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process we are able to extend the time-dependent MFS to
solve nonlinear partial differential equations. In this article,
the two-dimensional Burgers’ equations in one and two
variables are analyzed by the proposed meshless method
and the ELMFS analysis compares very well with the
analytical solutions and FDM results. Hence, it is
convinced that the proposed method could provide a
simple, robust and reliable numerical tool for Burgers’
equations.

Although the proposed ELMFS can be easily used to
deal with the nonlinear Burgers’ equations, there are still
some issues which have to be addressed at this stage. One
of the issues is the stability of ELMFS which means the
determinations of the time increment and the temporal
location of the source points. Roughly speaking, the
time increment of the ELMFS will be determined by a
compromise of accurate schemes between the ELM
(higher-order finite difference scheme will surely improve
the accuracy) and the MFS (very accurate method). So
there is no stability but only accuracy problem in the

ELMFS. On the other hand, the temporal location of the
source points can be settled by the proposed empirical
formula. More detailed numerical and theoretical study of
the stability and accuracy will be performed in the near
future.
Another relevant issue of ELMFS is the comparison of

efficiency between the proposed method and conventional
numerical methods. Though the proposed method outper-
forms conventional methods in the issue of mesh genera-
tion and numerical quadrature, and high powers to get
accurate nonlinear solutions for dealing with the irregular
domains and initial and boundary noise data by using very
coarse collocating points, the full-populated matrices
solvers are crucial for promoting efficiency of the ELMFS.
It is too premature to draw a solid conclusion now to take
into considerations of so many issues discussed above.
Perhaps a thorough study to find an efficient matrices
solver is of paramount importance to the popularity of the
ELMFS and this investigation deserves more intensive
research.
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Table 5

Numerical solutions of (a) u and (b) v at different time levels in some specific points of problem 3 (Re ¼ 10, Dt ¼ 0.005, N ¼ 120)

x y t ¼ 0.01 t ¼ 0.5 t ¼ 2.0

Analytical

solution

ELMFS |ERROR| Analytical

solution

ELMFS |ERROR| Analytical

solution

ELMFS |ERROR|

(a)

0.00 0.90 0.68858 0.68863 4.88E�05 0.68122 0.68128 6.35E�05 0.65561 0.65584 2.23E�04

�0.70 0.50 0.70428 0.70430 1.81E�05 0.69828 0.69827 1.87E�06 0.67645 0.67648 3.41E�05

�0.70 �0.50 0.64035 0.64041 5.45E�05 0.63086 0.63114 2.83E�04 0.60183 0.60212 2.89E�04

0.00 �0.90 0.56113 0.56129 1.68E�04 0.55433 0.55475 4.15E�04 0.53701 0.53738 3.67E�04

0.90 0.00 0.56113 0.56130 1.70E�04 0.55433 0.55459 2.60E�04 0.53701 0.53736 3.53E�04

0.00 0.50 0.58698 0.58700 1.44E�05 0.57851 0.57859 8.22E�05 0.55568 0.55613 4.59E�04

�0.45 0.25 0.67628 0.67629 4.27E�06 0.66808 0.66819 1.04E�04 0.64054 0.64080 2.57E�04

�0.38 0.00 0.65359 0.65359 4.21E�06 0.64437 0.64453 1.56E�04 0.61525 0.61560 3.46E�04

�0.45 �0.25 0.64035 0.64037 2.02E�05 0.63086 0.63113 2.75E�04 0.60183 0.60221 3.80E�04

0.00 �0.50 0.58698 0.58699 7.03E�06 0.57851 0.57887 3.56E�04 0.55568 0.55616 4.83E�04

0.50 0.00 0.58698 0.58700 1.44E�05 0.57851 0.57859 8.22E�05 0.55568 0.55613 4.59E�04

0.00 0.08 0.63105 0.63107 1.82E�05 0.62149 0.62157 8.11E�05 0.59292 0.59339 4.66E�04

�0.07 0.00 0.62988 0.62989 1.28E�05 0.62031 0.62042 1.04E�04 0.59183 0.59228 4.55E�04

0.00 �0.08 0.61856 0.61858 1.65E�05 0.60907 0.60919 1.22E�04 0.58157 0.58205 4.78E�04

0.08 0.00 0.61856 0.61858 2.36E�05 0.60907 0.60917 9.40E�05 0.58157 0.58207 4.94E�04

(b)

0.00 0.90 0.81142 0.81138 3.52E�05 0.81878 0.81873 5.47E�05 0.84439 0.84419 1.95E�04

�0.70 0.50 0.79572 0.79572 7.99E�06 0.80172 0.80175 2.86E�05 0.82355 0.82355 5.04E�06

�0.70 �0.50 0.85965 0.85961 4.21E�05 0.86914 0.86894 2.05E�04 0.89817 0.89796 2.09E�04

0.00 �0.90 0.93887 0.93872 1.50E�04 0.94567 0.94532 3.48E�04 0.96299 0.96269 2.98E�04

0.90 0.00 0.93887 0.93874 1.37E�04 0.94567 0.94546 2.07E�04 0.96299 0.96271 2.76E�04

0.00 0.50 0.91302 0.91301 8.04E�06 0.92149 0.92142 6.75E�05 0.94432 0.94394 3.82E�04

�0.45 0.25 0.82372 0.82372 8.14E�07 0.83192 0.83183 8.35E�05 0.85946 0.85924 2.16E�04

�0.38 0.00 0.84641 0.84641 2.98E�06 0.85563 0.85550 1.30E�04 0.88475 0.88446 2.88E�04

�0.45 �0.25 0.85965 0.85963 1.50E�05 0.86914 0.86893 2.15E�04 0.89817 0.89787 3.00E�04

0.00 �0.50 0.91302 0.91301 5.04E�06 0.92149 0.92117 3.19E�04 0.94432 0.94391 4.19E�04

0.50 0.00 0.91302 0.91301 8.04E�06 0.92149 0.92142 6.75E�05 0.94432 0.94394 3.82E�04

0.00 0.08 0.86895 0.86894 1.06E�05 0.87851 0.87845 6.80E�05 0.90708 0.90669 3.91E�04

�0.07 0.00 0.87012 0.87011 7.62E�06 0.87969 0.87959 9.19E�05 0.90817 0.90779 3.84E�04

0.00 �0.08 0.88144 0.88143 9.72E�06 0.89093 0.89082 1.08E�04 0.91843 0.91802 4.05E�04

0.08 0.00 0.88144 0.88143 1.35E�05 0.89093 0.89085 7.76E�05 0.91843 0.91801 4.13E�04
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